COMMSC9PE®

Generic 1-pair Topology considerations

Masood Shariff

Engineer Senior Principal Systems Engineering

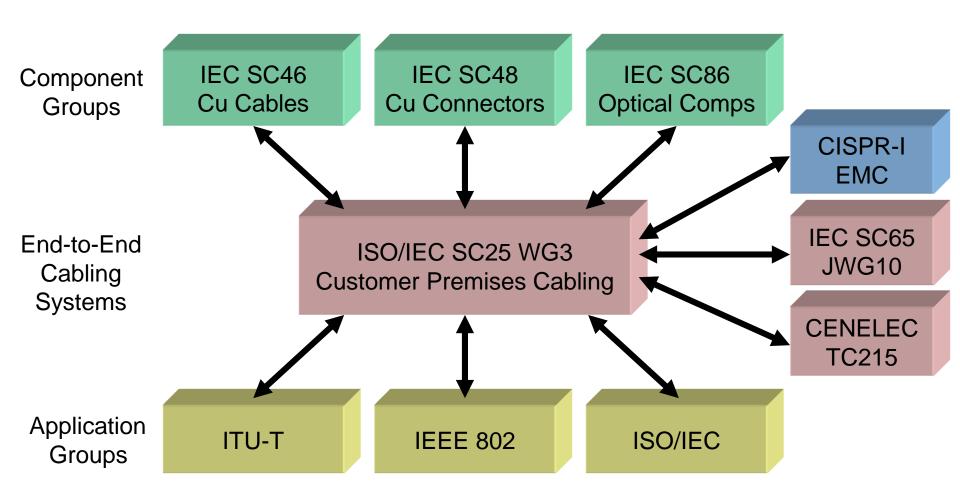
Supporters

NAME	COMPANY	NAME	COMPANY		
Matthias Fritsche	HARTING Electronics GmbH				
Dieter Schiketanz	Reutlingen University				
Alan Flatman	LAN Technologies				
Bryan Moffitt	CommScope				
Andy Jimenez	ANIXTER				
	IEEE 802.3bt Huntington Beach CA January 2017				

Background

There are several single pair applications from IEEE 802.3 with different reach objectives as shown below:

Application	IEEE 802.3 TF	Data rate	Distance	No of Conn	Frequency	DOP
10SPE	802.3cg	10 Mb/s	1000 m	10	0.1-20 MHz	June 2019
100BASE-T1	802.3bw	100 Mb/s	15 m	4	1-100 MHz	2015
1000BASE-T1 type A	802.3bp	1000 Mb/s	15 m	4	1-600 MHz	2016
1000BASE-T1 type B	802.3bp	1000 Mb/s	40 m	4	1-600 MHz	2016
PoDL	802.3bu	50 W	15 m (extendable)			2016
NGAUTO	SG	2.5, 5, 10 Gb/s	15 m	4	1-2000 MHz	TBD


^{*}NGAUTO Study Group Objectives not yet adopted by 802.3. frequency range based on presentations for technical feasibility

While each is a specialized application, TIA/ISO cabling standards generally attempt to specify generic cabling using a common topology

Structured Cabling History

- Structured cabling came into being in 1991 around the same time as the first IEEE 10BASE-T Ethernet application
- Balanced cabling has evolved with the applications to develop Categories 5, 5e, 6, 6A, and 8 to keep up to the demands of higher speed applications
- Standardized generic cabling has proved to be a popular stable platform for applications and customers with several billion meters installed around the globe

Cabling Centric Standards Process Model

Courtesey: Alan Flatman from ISO WG3 report to IEEE 802.3, Vancouver BC

Desired specifications for Single-Pair

Transmission Specifications

- Insertion Loss
- Return Loss

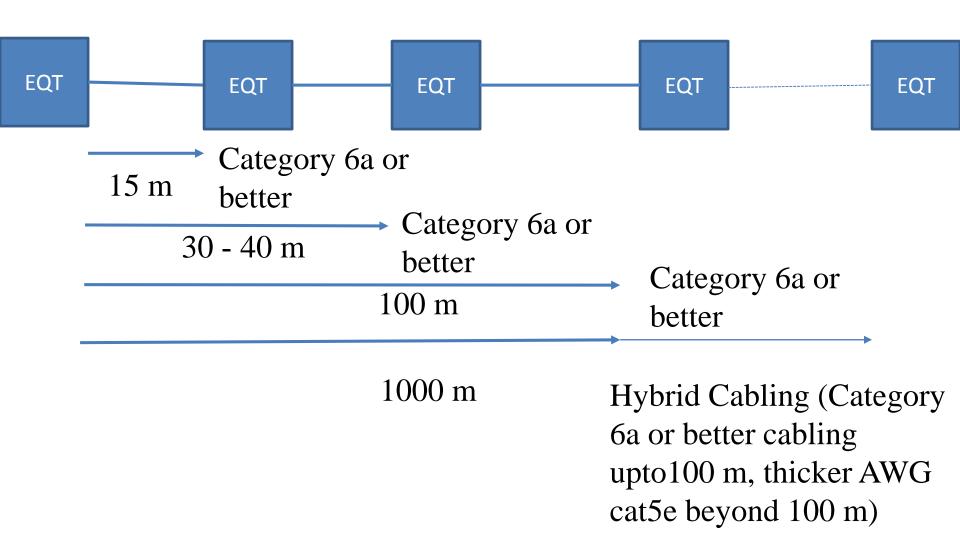
EMC-related

- Balance (TCTL, ELTCTL)
- Coupling Attenuation

Crosstalk-related

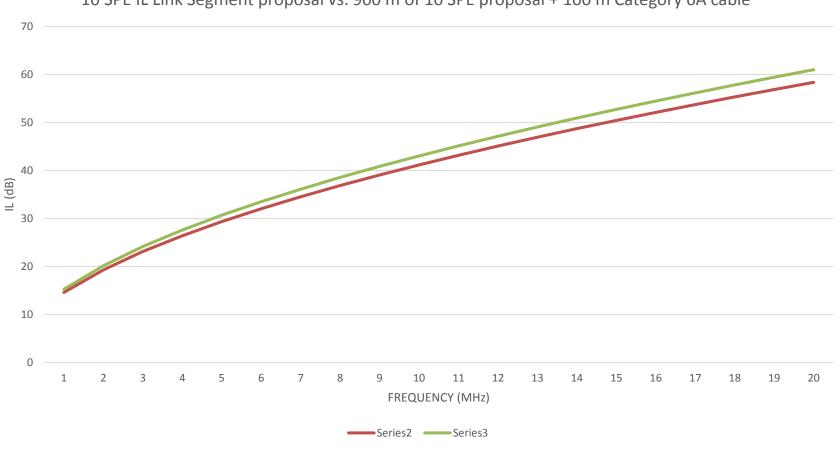
- Alien PSANEXT
- Alien PSAACRF (alien FEXT)

Reach break-down by standard and Category


15m:

- 802.3bw will work with < 100 MHz performance specified
- 802.3bp drives Category 6a-like specifications (~500 MHz specified)
- Multi-gig applications likely to drive from Category 6a (500MHz) to Category 8-like (2 GHz) specifications

40m: 802.3bp "Type B" drives Category 6a-like + enhanced alien crosstalk specs


- Category 6a specifications for alien crosstalk are sufficient
- Shielding likely in harsh environments
- 100m: No IEEE single pair applications yet
 - 4-pair technology path suggests bandwidth to 500 MHz is useful at this reach
- 1000m: 802.3cg likely to drive hybrid cabling due to application
 - Bandwidth unclear
 - High EMI environment drives good balance and/or shielding

Reach Zone Approach

IL comparison of current 10SPE proposal vs. using 100 m of Cat6A for the first 100 m

10 SPE IL Link Segment proposal vs. 900 m of 10 SPE proposal + 100 m Category 6A cable

Impact on IEEE 802.3cg link segment

- Transmission performance of first 100 m inside a building will be improved to Category 6A or better
- The cable will be typical 23 AWG with higher (worse) IL to allow for dense and compact installation inside buildings
- The rest of the 900m link segment will support the current proposal in the task force and improve transmission parameters to Category 5e
- RL of the combined 1000 m link segment will be compliant to current 802.3cg link segment