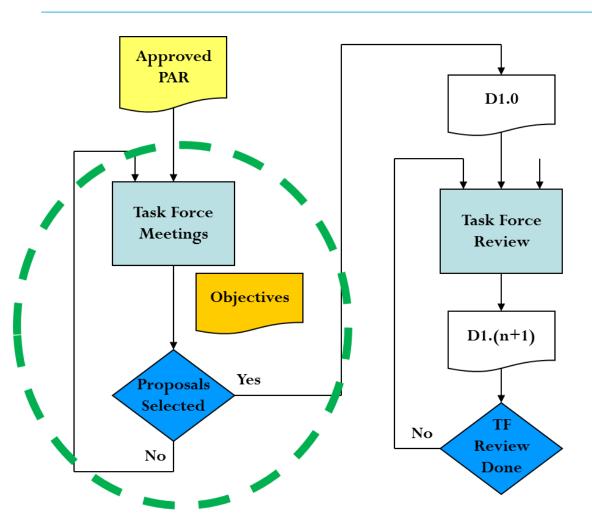
The Road to Draft 1.0


IEEE P802.3cg 10 Mbps Single Pair Ethernet Task Force

George Zimmerman (Chair)

CME Consulting, Inc.

Vancouver, BC, Canada, March 13-16, 2017

The Road to Draft 1.0

- We have "studied"
- We have objectives and a PAR
- We will always have questions
- Q: How do we get to D1.0?
- A: Make proposals and select them

Baseline Proposals – What are they?

- Proposals take many forms:
 - Concepts a little more than an objective Example: '802.3cg will use a baseband PHY'
 - Equations good for known parameters

$$IL(f) \le 10 \times \left(1.23\sqrt{f} + 0.01 \times f + \frac{0.2}{0.02\sqrt{f}}\right) dB$$

- Specifications to translate into IEEE Std 802.3 format
- Precise Text & Figures for Inclusion in the standard
- All require a statement/motion to be adopted
 - "Move to: Adopt page 3 of zimmerman_3cg_01_0317.pdf as baseline for 802.3cg PHY link segment IL"
 - Making the statement makes it clear

Standards Development is:

- NOT: a Spectator Sport:
 - If everyone sits back, there will be no standard
 - Single presenter/proposers make mistakes
- NOT: a Review Board:
 - If you have an issue with a proposal:
 - Express the concern, be prepared to bring data to show the problem and bring an alternative---don't just say you don't like it!
- NOT: Purely Technical:
 - Just about anything can be the best technical solution given the proper context
- NOT: Purely Political:
 - "Technical Considerations remain our primary focus"
- IS: A CONSENSUS BUILDING ENTERPRISE
 - Consensus happens when you have broad participation

What if there is more to know?

- First, there ALWAYS is....
- So, grab progress when you can:
 - Define what you know is it enough to adopt something?
 - Define what you need to know:
 - Tell the group
 - Get feedback if it is really needed
 - Propose how to find it out
 - Get help! this builds consensus.

Version 2.6

Steps to Specify a PHY

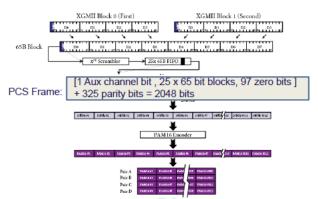
- PHY specs in 802.3 are rarely adopted as a whole 'Blue Book' spec
 - We can make changes if the consensus is we made a mistake
- Specify the link segment
 - Check against the objectives/desired uses
 - Try some proposed PHYs on it to see if it can work, then adopt
- Specify the transmission constraints & noise environment
 - Build the noise incrementally
 - Get the main parts, don't 'boil the ocean'
- Try some line coding, modulation, FEC, then present performance, adopt and build on work
 - Simulate, use theory, predict performance
 - Review, add more noise & constraints
 - Repeat until satisfied there is enough confidence to adopt
 - Continue to test as the specification is refined.
- Define next level of specifications: (usually at draft 1.x)
 - Jitter, linearity, noise tests get filled out in Task Force review

Example: 802.3bz

- Build consensus in ad hocs
 - Propose outline
 - Reference other specifications where possible
 - Document at a high level, with enough detail filled in
 - Then present to the TF and adopt!

Version 2.6

Example: 802.3bz (cont'd)


PCS/PMA Base Coding

- · Start from 10GBase-T
- Use PAM 16 signaling per symbol
 - PAM 16 = 4 bits per symbol
 - 8 bits per 2 symbols
 - All 8 bits over 2 symbols are used
 - 325 of additional bits are used for protecting previously un-coded bits
 - 97 bits are set to zero (known transmitted bits help LDPC gain)
- · All bits are protected by LDPC
- Otherwise, a scaled version of 10GBase-T
- All other electrical specs are scaled versions of 10GBase-T
 - Minor enhancement is total transmit power: 1.0 to 3.0 dBm
 - 2.2 dB below 10GBASE-T bounds to limit emission on CAT5e while still allows good SNR

Modulation and Encoding

- · 5Gb/s via fully LDPC coded PAM 16 running at 400Ms/s
- · 2.5Gb/s via fully LDPC coded PAM 16 running at 200Ms/s
- LDPC Frames
 - -5G = 320ns
 - -2.5G = 640ns
- Training is the same as 10GBASE-T training sequence at 400 MS/s and 200 MS/s

Frame structure

- Follows 10GBase-T XGMII → 64b/65b → Scrambling (master/slave)
- PCS frame adjusted to accommodate all bit encoding
 - 320ns @ 5Gb/s; 640ns @ 2.5Gb/s
- PAM encoder(Grey Coded PAM-16) → THP → Lane Transmission

Motion

- Move to: adopt PMA/PCS Consensus Baseline Proposal as defined in Shirani_3bz_02_0515.pdf pages 3 to 5 as the basis of PMA / PCS for 802.3bz draft
- •M:R. Shirani
- S: Ron Cates
- Technical (75%)
- •Y: 49 N: 0 A: 1
- MOTION PASSES

Example: 802.3bq PHY baseline

- Baseline proposal outlined and discussed in multiple ad hocs
- Consensus built around strawman
- Additional areas for improvement identified, not closed
- Editor drafted text adopted at subsequent meeting

Baseline Proposal

- Baseline PHY proposal:
 - Use PCS, Framing and Line Coding from Clause 55
 - Increase symbol rate 4X to 3200 Mbaud
 - Drop transmit power to ~ 0 dBm at MDI
- Areas for improvement/consideration:
 - Backchannel for THP dynamic update?
 - Revised FEC to cover uncoded bits?
 - · Multiple ways of doing this
 - Faster startup?
 - Negotiated patch-cord operational mode?
 - Remove PBO?

Proposal to Move Forward

- At least 2 PHY vendors have contributed analysis of strawman
 - 3 have confirmed symbol rate is in sweet spot for AFE power
- 2 meeting cycles, 4 ad hoc calls, general consensus, no contributed alternatives
- Consider adopting skeleton of PHY baseline and move forward with refinements at this meeting or setting it up for decision at the May meeting, and consider refinements
- Proposed Motion:
 - Move to adopt the proposal on page 6 of zimmerman 3bgah 1213.pdf, based on a 4X rate scaling of Clause 55 signaling, as a baseline PHY specification with future consideration of the proposed modifications listed on the same slide.

IEEE 802.3bq 40GBASE-T Task Force, Dec 5 2013 PHY Baseline Proposal Ad Hoc

IEEE 802.3bg 40GBASE-T Task Force, March 2014 Plenary Meeting, Beijing, China

Example: Add-on: 802.3bq RS-FEC

 Additional features adopted as draft developed (specifics):

Motion #3: Adopt the 512/513b transcoding & 8-bit RS FEC proposal in languer_3bq_01a_0115.pdf

40GBASE-T Error Control Coding Proposal - Convert 50x 85B blocks into 2x 65B + 6x 513B blocks freeing up 42 bits - Combine with CRC-8 to create 50 free bits - Use an 8-bit symbol to create a 3 symbol correcting RS256 code - Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bit symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bits symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bits symbols with 2x zero bits giving us an RS256(198,192) code **Thus 1536 bits maps into 192 8-bits symbols with 2x zero bits giving us a

Presentation with technical specifics, but not standards text

Example 802.3bp - small steps

- Frequency range
- Link Segment
- Modulation
- Mapping scheme
- etc...
- Then text:
 - PCS
 - FEC
 - Test specs

Motion #3

- Move that the IEEE P802.3bp Task Force adopts PAM3 as the modulation scheme for 1000BASE-T1 PHY.
- M: Mehmet Tazebay

S: William Lo

- ▶ MOTION PASSES (Technical >=75%)
- Y:33 N: 0 A: 5

Proposed Baseline Text for PCS IEEE 802.3bp 1000BASE-T1 Task Force

6th January 2015

97.3.4 PMA training side-stream scrambler polynomials

The PCS Transmit function employs side-stream scrambling. If the parameter config provided to the PCS by the PMA PHY Control function via the PMA_CONFIG.indication message assumes the value MASTER, PCS Transmit shall employ

$$g_{M}(x) = 1 + x^{13} + x^{33}$$

as transmitter side-stream scrambler generator polynomial. If the PMA_CONFIG.indication message assumes the value of SLAVE, PCS Transmit shall employ

$$g_{c}(x) = 1 + x^{20} + x^{33}$$

What if we have competing proposals?

- Good for us!
- Analyze, look for important points
- Enable analysis by non-proponents
 - Slugfests between proponents help no one
- Look for points of commonality and adopt
- Downselect if there are too many choices
 - Pluralities make consensus hard

Best Ways to a Fast Draft

- Don't start from a blank sheet of paper
- Projects move faster once there is a draft
 - (unless you happen to be in PoE ☺)
- Find similar 802.3 text
 - If no 802.3 text, use similar standards/specs
- Look for low hanging fruit
 - Common points in existing proposals
 - Broad concepts (Symbol rate (baud))
- Focus on which questions are interoperability standard answers and which are 'product specs'
- Work with your editors

Thank You!