Additional Non-Industrial Use Cases for 10SPE May 2017

Peter Jones - Cisco

802.3cg 10SPE TF – May 2017, New Orleans, LA

http://www.ieee802.org/3/cg/public/Mar2017/Lewis 3cg 01 0317.pdf

802.3cg 10SPE TF - May 2017, New Orleans, LA

Quick recap from Vancouver

 Jon Lewis from Dell EMC presented "Non-Industrial Use of P802.3cg"

http://www.ieee802.org/3/cg/public/Mar2017/Lewis 3cg 01 0317.pdf

- This described a new and significant use case for "intra-system control" of the many and varied devices inside a modern day server.
- Key points (slides) from this presentation follow this slide.

http://www.ieee802.org/3/cg/public/Mar2017/Lewis 3cg 01 0317.pdf

http://www.ieee802.org/3/cg/public/Mar2017/Lewis 3cg 01 0317.pdf

http://www.ieee802.org/3/cg/public/Mar2017/Lewis 3cg 01 0317.pdf

Why 10 Mbps Single Twisted Pair Ethernet?

- Same number of pins as SMBus which would maintain current PCIe standard pin count while adding network functionality.
- Using Ethernet allows for discovery of devices using a common BMC driver.
 - Going from >10 custom drivers to a standard Ethernet driver reduces complexity on the BMC coding and will
 greatly reduce validation time now required for all custom implementations.
- As the compute node and networking "converge" there is a fine line between what is in a traditional server and what is in the networking "Ether"
 - External PCIe Expanders
 - Chassis servers
 - Modular server implementations. Ethernet provides a standard ubiquitous management communication path
- Easier for automated alerts than multi-master SMBus.
 - Using SMBus multiplexers makes multi-master difficult → impossible. Thus scanning the bus continuously is required.
 - Using Ethernet the endpoint could transmit the alert at any time without a master/slave relationship.

IEEE P802.3cg 10 Mbps Single Twisted Pair Ethernet Task Force

DELLEMC

My Summary (reflective listening)

- It seems that there could be a significant advantage in converting older intra-system control interfaces (e.g., I2C, SPI, MDIO, etc) to 10SPE.
- The advantage as described is not in the area of relative cost, but improvement on the development timeline and reduction in defects seen during or after development.
 - There may or may not be relative cost advantages in the system. To answer that question for given type of system requires a much more detailed evaluation.

Other types of system – Network devices

- Talking to a number of my colleagues offline, I believe that there are equivalent simplification benefits available in (at least) mid to high end networking devices (e.g. network switch, router, firewall, etc).
- These devices normally have a large number of older intra-system control interfaces (e.g., I2C, SPI, MDIO, etc) to control internal infrastructure (e.g. fans, power supplies, etc)
- These control interfaces are well known in the industry to be a significant source of functional and performance issues.
- I found that the potential benefits of this 10SPE use case could be explained in ~ 5 minutes, and were enthusiastically embraced.
- This would marry very well to the "backplane Ethernet" which is the dominant higher speed intra system control plane today.

Other types of system – optics modules (inc copper)

- An additional type of control interfaces present in most network systems is the I2C (or similar) used to control pluggable optics (e.g. SFP+, QSFP+, etc).
- There are lots of these in most networking devices, and they have the same issues.
- As technology develops (e.g. QSFP-DD), the current control interface is becoming a significant bottleneck.
- 10SPE could be a very effective solution to this issue.
 - It potentially offers all the same benefits listed for the server in slide 6

Applicability & Audience

- I believe that use case is broadly applicable across the industry, from low end IoT devices to high end systems (e.g. core internet switches/routers).
- Individuals from many of the potential users attend 802.3, but not 802.3cg. This may also be of significant interest to individuals in the 802.1 group.
- We need to broaden the discussion beyond 802.3cg and it's meetings and adHocs to address the needs of the broad market

Wrap up and next steps (1)

- I believe that:
 - the "intra system" control interface is a very significant opportunity to use the 10SPE technology.
 - use of a "simple" point to point short reach 10SPE system (with optional power) could address a significant proportion of the current I2C, SPI, MDIO, etc use cases.
 - Adding 10SPE as an included interface in low end microcontrolers (like those used in pluggable fans, power supplies, optics modules etc) is an obvious application of the technology
 - Creating "intra-system" (aka "on-board") switch devices to build the ethernet network to connect these devices to the main intra-system control loop is well within the capabilities of the industry

Wrap up and next steps (2)

- Next steps I think are needed
 - Produce at least the equivalent deck to <u>Lewis 3cg 01 0317.pdf</u> for a small number of types of networking devices (including for pluggable optics)
 - Socialize these applications within the broader 802.3 community as many individuals are not following 10SPE closely.
 - Summarize requirements for this intra-system control interface use case.
 - Provide estimates of the numbers of links (equivalent of ports) that could benefit from this technology annually
 - Provide relative cost/complexity for incorporating a 10SPE Ethernet interface into the class of low end micro controllers use for these applications.
 - Assess if there are any gaps between the requirements and what 10SPE currently plans to deliver.

Wrap up and next steps (3)

- Next steps I think are needed (cont.)
 - Start some work in the 802.3 NEA AdHoc to broadly socialize this topic.
 - Plan for 2 (or more) NEA AdHoc conference calls between New Orleans and Berlin.
 - Depending on the outcome of the conference calls, possibly request a physical meeting slot for this topic within NEA.

10SPE ask to NEA AdHoc

- It's clear that we need a broader discussion about this (and at least one other) new use case.
- The following request has been sent to the NEA AdHoc chair: During the work of the 802.3cg 10SPE task force, we have discovered or clarified the following broad use cases (within scope of our current PAR)
 - Building automation control interface
 <u>http://www.ieee802.org/3/cg/public/May2017/herbst_3cg_01_0517.pdf</u>
 - Intra-system (e.g. server, switch, etc) control interface <u>http://www.ieee802.org/3/cg/public/Mar2017/Lewis 3cg 01 0317.pdf</u> <u>http://www.ieee802.org/3/cg/public/May2017/jones 10spe 02 0517.pdf</u>

We believe that NEA AdHoc is the appropriate forum to progress these discussions with a broader interest group than may be currently participating in the 802.3cg. We would like to use it as a vehicle to discuss these use cases and build consensus on their requirements before and at the July plenary.

NEA report to 802.3

http://www.ieee802.org/3/minutes/may17/0517_NEA_report.pdf

Future NEA Activity

- Building automation control interface
 - Reference
 - http://www.ieee8o2.org/3/cg/public/May2017/herbst_3cg_01_0517.pdf
- Intra-system (e.g. server, switch, etc) control interface
 - References
 - http://www.ieee8o2.org/3/cg/public/Mar2017/Lewis_3cg_01_0317.pdf
 - http://www.ieee8o2.org/3/cg/public/May2017/jones_10spe_02_0517.pdf
- Planning conference calls before July Plenary with possible meeting at Plenary

IEEE 802.3 NEA Ad hoc, May 2017 Interim, New Orleans, LA, USA

IEEE

Consensus WE BUILD IT.

May 2017, New Orleans, LA

Connect with us on:

Facebook: https://www.facebook.com/ieeesa

Twitter: @ieeesa

LinkedIn: http://www.linkedin.com/groups/IEEESA-Official-IEEE-Standards-Association-1791118

IEEE-SA Standards Insight blog: http://standardsinsight.com

н

YouTube: IEEE-SA Channel

IEEE

standards.ieee.org Phone: +1 732 981 0060 Fax: +1 732 562 1571 © IEEE Thank You!

End