
IEEE802.3cg Page 1

Canova Tech
The Art of Silicon Sculpting

PIERGIORGIO BERUTO

ANTONIO ORZELLI

IEEE802.3cg TF

Comments on draft
May 18th2018

IEEE802.3cg Page 2

#316 →Figure 147-6

FALSE

ELSE

Error occurred when
porting the picture to
Frame from draft 1.0

IEEE802.3cg Page 3

#317, #318 → Scrambler - Proposed text changes

• 147.1.2 Operation of 10BASE-T1S

– The 10BASE-T1S PHY utilizes two level Differential

Manchester Encoding (DME) modulation transmitted at a

12.5 MBd rate (± TBD). A 17-bit self-synchronizing

scrambler is used to improve the EMC performance. 4B/5B

encoding is used to further improve EMC performance and

to perform out-of-band signaling among the connected

PHYs. […]

– The 4B/5B mapping is and the scrambler are contained in

the PCS (see 147.3) while the DME encoder/decoder is

contained in the PMA (see 147.5).

IEEE802.3cg Page 4

#319 → Scrambler - Proposed text changes

• 147.3.2.3 Functions

– ENCODE In the PCS transmit process, this function

takes as its arguments the pcs_txd input

one data nibble, scrambles it as defined in

147.3.2.5 and returns the corresponding 5B

symbol as defined in Table 147–1.

IEEE802.3cg Page 5

#320 → Scrambler - Proposed text changes
• 147.3.2.5 Self-synchronizing scrambler

The PCS Transmit function shall implement multiplicative scrambling using the following generator
polynomial:

𝑔 𝑥 = 1 + 𝑥14 + 𝑥17

An implementation of self-synchronizing scrambler by linear-feedback shift register is shown in figure
TBD#1. The bits stored in the shift register delay line at time n are denoted by Scrn[16:0]. At every
MII clock cycle, for each bit of TXD[3:0] the scrambler is advanced by one bit, and the output bit Sdn[i]
represented by the exclusive OR of Scrn[13], Scrn[16] and TXD[i] is shifted in as new Scrn[0], with i
ranging from 0 to 3 (i.e. LSB first). The scrambler is reset upon execution of the PCS Reset function. If
PCS Reset is executed, all bits of the 17-bit vector representing the self-synchronizing scrambler state
are arbitrarily set. The initialization of the scrambler state is left to the implementer. In no case shall
the scrambler state be initialized to all zeros.

T T

Scrn[0] Scrn[1]

T T

Scrn[13] Scrn[14]

T T

Scrn[15] Scrn[16]

+

TXDn[i]

Sdn[i]

+

Figure TBD#1

IEEE802.3cg Page 6

#321 → Scrambler - Proposed text changes

• 147.3.3.2 Functions

– DECODE In the PCS Receive process, this function

takes as its arguments the sym_rx input

data from PMA one 5B symbol, decodes the

corresponding nibble as defined in Table

147-1, descrambles it as defined in

147.3.3.4, and returns the corresponding 4B

MII data nibble as defined in Table 147–1. If a

violation of the encoding rules is detected,

PCS Receive asserts the signal RX_ER for at

least one symbol period.

IEEE802.3cg Page 7

#322 → Scrambler - Proposed text changes

• 147.3.3.1 Variables

duplex_mode […]

precnt counter for preamble regeneration

pcs_rxdv […]

IEEE802.3cg Page 8

#323 → Scrambler - Proposed text changes
• 147.3.3.4 Self-synchronizing descrambler

The PCS Receive function shall descramble the 5B4B decoded data stream and return the proper nibble
for generation of RXD[3:0] to the MII. The descrambler shall employ the polynomial defined in
147.3.2.5. An implementation of self-synchronizing descrambler by linear-feedback shift register is
shown in figure TBD#2. The bits stored in the shift register delay line at time n are denoted by
Dcrn[16:0]. At every MII clock cycle, each bit of Srn[3:0] is shifted in as new Scrn[0] and the descrambler
is advanced by one bit. The output bit RXD[i] represented by the exclusive OR of Dcrn[13], Dcrn[16] and
Drn[i] is generated, with i ranging from 0 to 3 (i.e. LSB first). The descrambler is reset upon execution
of the PCS Reset function. If PCS Reset is executed, all bits of the 17-bit vector representing the self-
synchronizing descrambler state are arbitrarily set. The initialization of the descrambler state is left
to the implementer.

Figure TBD#2

T T

Scrn[0] Scrn[1]

T T

Scrn[13] Scrn[14]

T T

Scrn[15] Scrn[16]

+

Srn[i]

RXDn[i]

+

IEEE802.3cg Page 9

#324 → Scrambler - Proposed text changes

precnt <= 0

PRE

RSCD *
precnt ≠ 9

RSCD *
precnt = 9

precnt <= precnt + 1

EDIT. NOTE:
Fig 147-6 and
147-7 could be
merged

IEEE802.3cg Page 10

#325 → subclause 148.4.6.1
During the COLLIDE state, the PLCA Data state machine asserts packetPending =
FALSE and CARRIER_STATUS = CARRIER_ON via the PLS_CARRIER.indication
primitive. When the MAC has finished to send the jam bits as described in Clause 4 it
waits for the next transmit opportunity by switching to PENDING state.

During the PENDING state, the PLCA Data state machine asserts packetPending =
TRUE and keeps CARRIER_STATUS = CARRIER_ON via the PLS_CARRIER.indication
primitive to prevent the MAC to make new transmit attempts until PLCA Control state
machine signals that a new transmit opportunity is met. At that point
CARRIER_STATUS is set to CARRIER_OFF to have the MAC actually resend data after
waiting one IPG period as described in Clause 4.

Rationale: In mis-configured networks physical collisions might happen.
In such case setting packetPending flag in PLCA Data state machine in COLLIDE state
may cause trouble (e.g. COMMITTING while JAMMING).

IEEE802.3cg Page 11

#326 → Figure 148-6

packetPending <= FALSE

packetPending <= TRUE Rationale: In mis-configured
networks physical collisions might
happen.
In such case setting
packetPending flag in PLCA Data
state machine in COLLIDE state
may cause trouble (e.g.
COMMITTING while JAMMING).

IEEE802.3cg Page 12

#327 → subclause 148.4.5.1

When PLCA functions are enabled, the PHY with local_nodeID

variable set to 0 immediately switches to RECOVER state and

waits for all other PHYs to be silent for at least

RECV_BEACON_TIMER. Then it switches to SEND_BEACON state

to have all other PHYs synchronize their own transmit

opportunity counter and related timer. Slave PHYs wait in

RESYNC state until a BEACON is received.

Rationale: The node with ID = 0 could be reset in the middle of a BEACON cycle
and start over sending a new BEACON while other PHYs are still in the process
of transmitting / waiting their TO.
To avoid this the node with ID = 0 could start in recovery mode and wait for the
media to be silent before sending the BEACON

IEEE802.3cg Page 13

#328 → Figure 148-3

plca_en = ON *
local_nodeID = 0

*
local_nodeID ≠ 0

Rationale: The node with ID = 0
could be reset in the middle of a
BEACON cycle and start over
sending a new BEACON while
other PHYs are still in the process
of transmitting / waiting their TO.
To avoid this the node with ID = 0
could start in recovery mode and
wait for the media to be silent
before sending the BEACON

IEEE802.3cg Page 14

329 → Subclause 148.4.6.1
During the HOLD state the PLCA Control state machine is notified via the
packetPending variable that data is available to be transmitted. At next transmit
opportunity the PLCA Control state machine eventually allow transmitting the
delayed data by setting the "committed" variable to TRUE. In such case the PLCA
Data state machine switches to TRANSMIT state to actually deliver the data for the
PHY to encode and transmit on the medium.

If TX_ER is asserted during the HOLD state, the PLCA Data state machine switches to
ABORT state to assert packetPending = FALSE and waits for the MAC to stop sending
data. The aborted packet will not be transmitted on the medium.

If another PHY starts a transmission after meeting its own transmit opportunity,
delayed data cannot be held anymore and a logical collision is triggered by switching
to COLLIDE state.

IEEE802.3cg Page 15

#330 (TX_ER) → Subclause 148.4.6.2

TX_EN The MII signal TX_EN.

TX_ER The MII signal TX_ER.

COL The MII signal COL.

IEEE802.3cg Page 16

#331 (TX_ER) → Figure 148-5

MCD*
committed = FALSE *
TX_ER = TRUE *
plca_crs = FALSE

ABORT

packetPending <= FALSE

TX_ER = FALSE *
plca_crs = FALSE

plca_txen = FALSE

MCD *
committed = TRUE *
plca_crs = FALSE

*

IEEE802.3cg Page 17

#332 → 148.2 Overview

The working principle of PLCA is that each PHY on a multidrop network is
granted, in turn, a single transmit opportunity based on its assigned unique
node ID.

At any time, only the PHY owning a transmit opportunity is allowed to send
data over the medium, therefore avoiding physical collisions.

Transmit opportunities are generated in a round-robin fashion every time
the PHY with node ID = 0 signals a BEACON on the medium, indicating the
start of a new cycle. This can only happen after each PHY has been given
exactly one transmit opportunity, thus ensuring media access fairness.

PLCA relies on CSMA/CD functions to have the MAC delay a transmissions
until a transmit opportunity is met.

