

10BASE-T1L Power Delivery

HEATH STEWART
ANALOG DEVICES
REV 01F

PD Available Power

► Draft 1.2 Annex A Optional Power Distribution

The minimum continuous power that the PSE shall be capable of supplying (Ppd) for the 1000 m link segment is given in Table 200A–1 for each class.

Table 200A–1—Point-to-point class power requirements

Class	Vpse, min (V)	Ipi, max (A)	Rloop (60C) (ohm)	Ppd(min) (1000 m) (W)
1	20	.102	59	1.4
2	20	.155	39	2.2
3	50	.255	59	8.9
4	50	.388	39	13.6

Alternate Approaches

- Annex A, today, philosophically approaches power deliver in terms of
 - 1000m cable resistance
 - "Guaranteed" PD delivered power
 - e.g. V_{PSE} = 50V, 18AWG @ 1000m, allows P_{PD, max} = 8.9W
- Alternate approaches may
 - Allow higher delivered power at shorter reaches
 - Allow more economical, thinner AWG cabling at shorter reaches
- Difficulties
 - Cable properties not pre-defined
 - Installers need to meet R_{cable} requirements as function of L_{cable}

PD Power, AWG, Length and IL Limit

- Three limitations exist on delivered power
 - Power system stability
 - Selected: IR Drop 30% / PD Power 70%
 - Economic feasibility of magnetics
 - Current carrying capability
 - Mags cost is a function of Amperage and number of stages
 - Selected: I_{mags, max} = 400mA
 - Best guess...
 - Length at IL Limit
 - Limits max length of 24AWG to ~500m

Enable 300m Class Using 24AWG Cabling

- Moves the burden of AWG vs Length selection onto the installer
- 1000m 24AWG exceeds IL Limit
- At 300m, some classes exceed 400mA

- PD label specifies
 - PD Watts
 - PSE Voltage
 - Min AWG

Specified by AWG and Length								
			1000 m			300 m		
		Vpse,	Rloop, max Ppd			Rloop, max	Ppd	
AWG	Class	min	lpi, max	(60C)	1000m	lpi, max	(60C)	300 m
18AWG	1	20	102	59	1.4	326	18	4.6
14AWG	2	20	155	39	2.2	488	12	6.8
24AWG	3	20	52	116	0.7	169	36	2.4
18AWG	4	50	254	59	8.9	815	18	28.5
14AWG	5	50	388	39	13.6	1221	12	42.7
24AWG	6	50	129	116	4.5	423	36	14.8

Consisted by ANNC and Langth

Enable 300m Class Using 24AWG Cabling

- ► Recommendation
 - Add two 24AWG Classes at 300m
 - 20V, 2.4W
 - 50V, 14.0W

Specified by AWG and Length									
				1000m		300m			
							Rloop,		
		Vpse,		Rloop, max	Ppd		max	Ppd	
AWG	Class	min	lpi, max	(60C)	1000m	lpi, max	(60C)	300m	
18AWG	1	20	102	59	1.4	326	18	4.6	
14AWG	2	20	155	39	2.2	488	12	6.8	
24AWG	3	20	52	116	0.7	169	36	2.4	
18AWG	4	50	254	59	8.9	815	18	28.5	
14AWG	5	50	388	39	13.6	1221	12	42.7	
24AWG	6	50	129	116	4.5	400	36	14.0	

Clause 104.2 Link Segment Baseline

Modify link segment description in Clause 104.2

104.2 Link segment

The dc loop resistance of the link segment shall be less than 6 Ω for 12 V unregulated classes (Classes 0 and 1). The dc loop resistance shall be less than 6.5 Ω for 12 V regulated, 24 V regulated and unregulated, and 48 V regulated Classes (Classes 2 through 9). The link segment dc loop resistance shall be less than 59 Ω for Classes 10 and 13. The link segment dc loop resistance shall be less than 39 Ω for classes 11 and 14. The link segment dc loop resistance shall be less than 36 Ω for classes 12 and 15.

Clause 104.3 Table 104-1 Baseline

► Add following columns to Table Clause 104.3 Table 104-1

Class	10	11	12	13	14	15
V _{PSE(max)} (V)	36	36	36	60	60	60
V _{PSE_OC(min)} (V)	20	20	20	50	50	50
V _{PSE(min)} (V)	20	20	20	50	50	50
I _{PI(max)} (mA)	102	155	169	254	388	400
P _{class(min)} (W)	2.04	3.1	3.38	12.7	19.4	20
V _{PD(min)} (V)	13.98	13.96	13.92	35.01	34.87	35.6
P _{PD(max)} (W)	1.43	2.16	2.35	8.89	13.53	14.24
Cable AWG	18	14	24	18	14	24
Cable Length (m)	1000	1000	300	1000	1000	300

► Note: Need to work with editor to achieve rational page width

Clause 104.7 SCCP Class Table 104–9 Baseline

► Add new Classes to Table 104-9 - CLASS_TYPE_INFO Register Table

b[9:0]	Class	9876543210	RO
		1 1 1 1 1 1 1 1 0 = Class 0	
		1111111101 = Class 1	
		1111111011 = Class 2	
		1 1 1 1 1 1 0 1 1 1 = Class 3	
		1111101111 = Class 4	
		111101111 = Class 5	
		1 1 1 0 1 1 1 1 1 1 = Class 6	
		1 1 0 1 1 1 1 1 1 1 = Class 7	
		1 0 1 1 1 1 1 1 1 1 = Class 8	
		0 1 1 1 1 1 1 1 1 1 = Class 9	
		0 0 0 0 0 0 0 0 0 1 = Class 10	
		0 0 0 0 0 0 0 0 1 0 = Class 11	
		0 0 0 0 0 0 0 0 1 1 = Class 12	
		0 0 0 0 0 0 0 1 0 0 = Class 13	
		0 0 0 0 0 0 0 1 0 1 = Class 14	
		0 0 0 0 0 0 0 1 1 0 = Class 15	

Table 45-211r - PoDL PSE Status Baseline

► Modify Table 45-211r - PoDL PSE Status 1 Register Bit Definitions

13.1.6:3	PD Class	6	5	4	3	RO
		1	1	1	1 Reserved Class Code 15	
		1	1	1	0 Reserved Class Code 14	
		1	1	0	1 Reserved Class Code 13	
		1	1	0	0 Reserved Class Code 12	
		1	0	1	1 Reserved Class Code 11	
		1	0	1	0 Reserved Class Code 10	
		1	0	0	1 Class Code 9	
		1	0	0	0 Class Code 8	
		0	1	1	1 Class Code 7	
		0	1	1	0 Class Code 6	
		0	1	0	1 Class Code 5	
		0	1	0	0 Class Code 4	
		0	0	1	1 Class Code 3	
		0	0	1	0 Class Code 2	
		0	0	0	1 Class Code 1	
		0	0	0	0 Class Code 0	

Annex 200A Baseline

► Remove 200A.1.1.12 and Table 200A-1 and associated PICS

200A.1.1.1.2 Point-to-point class power requirements

The minimum continuous power that the PSE shall be capable of supplying (Ppd) for the 1000 m link segment is given in Table 200A–1 for each class.

Table 200A–1—Point-to-point class power requirements

	Class	Vpse, min (V)	Ipi, max (A)	Rloop (60C) (ohm)	Ppd(min) (1000 m) (W)
	1	20	.102	59	1.4
	2	20	.155	39	2.2
ł	3	50	.255	59	8.9
	4	50	.388	39	13.6

Cable Loop Resistance Measurement

IR Drop Recovery

- ► 1000m classes are penalized for worst case IR drop
- Goal: Allow systems to optionally recover IR drop and allocate to the PD as usable power

Cable Resistance Measurement

- Two optional techniques for measuring cable resistance are presented
 - Physical Classification Technique
 - LLDP Classification Technique
- ► R_{CABLE} measurements are netted up by x1.16 to accommodate 40°C rise
- Various voltage and current measurements are made by the PSE and PD
 - Tolerance values are provided to allow more precise system to arrive at less margined RCABLE measurements
 - Eg
 - V_{MEAS PD} is measured (as a nominal)
 - V_{MFAS PD} measurement tolerance is provided as characterized value
 - V_{MEAS_PD} used in calculation is $V_{MEAS_PD,min} = V_{MEAS_PD,actual} V_{MEAS_PD,tolerance}$

Option 2a: Physical Classification Cable Resistance Measurement Built into Physical Classification

- Add V_{MEAS PSE} as measurement source
 - 4.7V to 5V with I_{MEAS PD} load
- $\blacktriangleright \ \mathsf{Add} \ \mathsf{I}_{\mathsf{MEAS_PD}}$
 - 10mA +/- 20%
 - From 3.9V to 5V
- Add V_{MEAS PD} readback accuracy
 - Range 0 to 5V
 - Max offset error 10mV
 - Max gain error+/-5%
 - Lsb 2.34mV
- Add I_{MEAS PSE} readback accuracy
 - Range 0 to 20mA
 - Max offset error 200uA
 - Max gain error +/-5%
 - Lsb TBD (eg 20mA / 256)
- Add optional V_{MEAS PSE} readback accuracy
 - Allows PSE to tighten computed R_{CABLE} accuracy

- Use Serial communication classification protocol (SCCP) to initiate negotiation
 - PSE requests R_{CABLE} measurement
 - PD acks support
 - PD presents/settles I_{MEAS PD}
 - PD measures V_{MEAS PD}
 - PSE measures I_{MEAS PSE}
 - PSE optionally measures V_{MEAS_PSE}
 - After 20ms, PSE reads back
 - V_{MEAS_PD}
 - V_{MEAS_PD} accuracy
 - P_{PD_REQ}
 - PSE computes R_{CABLE}, P_{PD_ASSIGN}, P_{PSE_ALLOC}
 - See following slide
 - PSE writes P_{PD_ASSIGN} to PD
 - Default is per R_{CABLE_CLASS}

Option 2b: Data Link Layer Classification Cable Resistance Measurement Built into LLDP

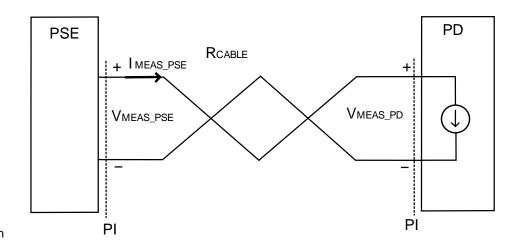
- Add V_{MEAS PSE} as readback accuracy
 - Range V_{CLASS,MIN} to V_{CLASS,MAX}
 - Max offset error 1% * V_{CLASS,MAX}
 - Max gain error +/-5%
 - Lsb 50mV
- Add I_{MEAS PSE} as readback accuracy
 - Range 0 to I_{CLASS,MAX}
 - Max offset error 1% * I_{CLASS,MAX}
 - Max gain error +/-5%
 - Lsb TBD (eg I_{CLASS,MAX} / 256)
- Add V_{MEAS PD} readback accuracy
 - Range 0 to 600mV
 - Max offset error 1% * V_{CLASS,MAX}
 - Max gain error +/-5%
 - Lsb TBD (eg V_{CLASS,MAX} / 256)
- Add reported P_{MEAS_PD}
 - Allows PD to enable tighter computed R_{CABLE} accuracy
 - Report P_{MEAS PD,MAX} to PSE as either
 - system characterized or
 - dynamically measured value

- Use LLDP to initiate negotiation
 - PSE requests Autoclass reference measurement
 - PD acks support
 - PD presents P_{PDAUTO} in range of
 - Max(P_{PD.MAX}, P_{Class}/4) to Max(P_{PD.MAX}, P_{Class})
 - PD measures V_{MEAS PD}
 - PSE measures V_{MEAS_PSE}
 - PSE measures I_{MEAS_PSE}
 - After 40ms, PSE reads back
 - V_{MEAS_PD}
 - V_{MEAS_PD} accuracy
 - I_{MEAS_PSE}
 - I_{MEAS PSE} accuracy
 - PSE computes R_{CABLE}
 - (add) Equation
 - PSE writes P_{PD ASSIGN} to PD
 - Default is per Physical class SCCP P_{PD_ASSIGN}

Calculations Cable Resistance Measurement Built into Physical/Data Link Classification

$$R_{CABLE_MEAS} = \frac{V_{MEAS_PSE,min} - V_{MEAS_PD,max}}{I_{MEAS_PSE,min}}$$

$$Arr R_{CABLE} = Min ((R_{CABLE_MEAS} \times 1.16), R_{LOOP(CLASS)})$$


► If
$$P_{PD_REQ} > P_{PD(CLASS),min}$$

•
$$P_{PD_ASSIGN} = Min \{P_{PD_REQ}, (P_{PSE(CLASS),min} - \frac{V_{PSE\,CLASS\,min}^2}{R_{CABLE}})\}$$

• Note: When
$$R_{CABLE} = R_{LOOP(CLASS)}$$
; $(P_{PSE(CLASS),min} - \frac{V_{PSE\ CLASS\ min}^2}{R_{CABLE}}) = P_{PD(CLASS),min}$

- ► Else $(P_{PD_REQ} \le P_{PD(CLASS),min})$
 - P_{PD_ASSIGN} = P_{PD_REQ}

$$P_{PSE_ALLOC} = V_{PSE(CLASS),min} \times \frac{V_{PSE(CLASS),min} - \sqrt{(V_{PSE(CLASS),min}^2 - 4 \times R_{CABLE} \times P_{PD_ASSIGN})}}{2 \times R_{CABLE}}$$

