802.3cg On the PCS Receive in clause 147

Gergely Huszak, George Zimmerman, Piergiorgio Beruto

(v3)

RX_n indexing and delay line

d3.0 comment i-319 See "Figure 147–8—PCS Receive state diagram (part b)" **Baseline**: PCS RX must include a 4-symbol long delay line **Background**: To allow starting actual frame reception upon receiving a valid JJHH, a delay line is there, therefore PCS RX is always 3 symbols behind the channel **Details**: The delay line is referred to as RX_{n-x} and it is fed¹ before RSCD, thus <u>when</u> <u>exiting DATA² DECODE()</u> is not executed anymore (which is run last upon last DATA \rightarrow DATA)

¹ PMA_UNITDATA.indication(rx_sym): $RX_{n-2} \rightarrow RX_{n-3}$, $RX_{n-1} \rightarrow RX_{n-2}$, $RX_n \rightarrow RX_{n-1}$, $rx_sym \rightarrow RX_n$ ² E.g. when $RX_{n-4} = data$, $RX_{n-3} = ESD$, $RX_{n-2} = ESDOK$, $RX_{n-1} = SILENCE$ and $RX_n = SILENCE$ **Problem**: Incorrect sequence number brought over from clause 96^1 **Result**: The last symbol of the frame remains undecoded (upon DATA \rightarrow GOOD_ESD) **Solution**:

- 1. Correct PCS RX in clause 147 \rightarrow being done now
- 2. submit maintenance request to correct clause 96 \rightarrow done by George Zimmerman

Current text:

Proposed text (correction highlighted):

¹ See for example state DATA in "Figure 96–10—PCS Receive state diagram"

Mutual exclusivity of the 2 forward exit conditions of DATA

d3.0 comment i-278 See "Figure 147–8—PCS Receive state diagram (part b)" **Problem**: The condition on DATA \rightarrow BAD_ESD and that on DATA \rightarrow GOOD_ESD may both evaluate to TRUE at the same time **Result**: PHY behavior becomes implementation-dependent (see interoperability) **Example**: RX_{n-3}=ESDOK/ESDBRS, RX_{n-2}=ESDOK/ESDBRS¹, RX_{n-1}=SILENCE, RX_n=SILENCE

Current text:

- DATA \rightarrow BAD_ESD: RSCD * (((RX_{n-2}=ESD + RX_{n-2}=ESDBRS) * RX_{n-1} \neq ESDOK) + RX_{n-3}=SILENCE)
- $DATA \rightarrow DATA$: RSCD * !(((RX_{n-2}=ESD + RX_{n-2}=ESDBRS) * RX_{n-1}≠ESDOK) + RX_{n-3}=SILENCE) * !((RX_{n-3}=ESD + RX_{n-3}=ESDBRS) * RX_{n-2}=ESDOK)

 $^{\rm 1}$ The 5B symbol of ESDOK and ESDBRS is the same (R)

Proposed text (additions highlighted):

- $DATA \rightarrow BAD_ESD$: RSCD * $(((RX_{n-2}=ESD + RX_{n-2}=ESDBRS) * RX_{n-1} \neq ESDOK * RX_{n-3} \neq ESD * RX_{n-3} \neq ESDBRS) + RX_{n-3} = SILENCE)$
- $DATA \rightarrow DATA$: RSCD * !(((RX_{n-2}=ESD + RX_{n-2}=ESDBRS) * RX_{n-1}≠ESDOK * RX_{n-3}≠ESD * RX_{n-3}≠ESDBRS) + RX_{n-3}=SILENCE) * !((RX_{n-3}=ESD + RX_{n-3}=ESDBRS) * RX_{n-3}=ESDBRS) * RX_{n-2}=ESDOK)

Descrabmler locking

d3.0 comment i-281 See "Figure 147–7—PCS Receive state diagram (part a)" **Baseline**: Self-synchronous descrambler needs initial 17 bits (≈5 symbols) to lock **Problem**: If implemented as specified by figures 147–7 and 147–8, descrambler will start locking in DATA state, this way making first data 17 bits undecodable **Solution**: Start feeding descrambler immediately after receiving valid "JJHH" in PRE¹

Proposed text (additions highlighted):

¹ The index x of the delay line RX_{n-x} is 3 (x=3), as per the explanation at pages 2-4 (on comment i-319)