802.3CG PMA ELECTRICAL AND LINK SEGMENT DEFINITION ... CHECKED

Orlando, Nov 8th 2017

Conrad Zerna

802.CG

Baseline for short reach link segment (as of motion #14 in Charlotte Sep 2017):

IL <	1+1.6 (f-1)/9 dB	f=0.3 10MHz
	2.6 + 2.3 (f-10)/23 dB	f=10 33MHz
	4.9 + 2.3 (f-33)/33 dB	f=3340MHz
RL >	14 dB	f=0.310MHz
	14-10*LOG10(f/10) dB	f=1040MHz
MC >	30 dB	f=0.320MHz
	30-20*LOG10(f/20) dB	f=20200MHz

- Progression of proposed values from 802.3bw \rightarrow 802.3cg
 - TX-Amp: $2.2V \rightarrow 1V$ (or -6.85dB)
 - Mode Conversion Limit: (-)43dB \rightarrow (-)30dB
- TX power is generated at lower baud rate
 → spectral power at lower frequencies will get higher (by about 5dB going from 33MHz to 8MHz)

- Transmit spectrum at 1Vpp differential (pos/neg levels +-500mV)
 - evenly distributed (first excel approximation) in 8MHz BW:
 PSD is at -65dBm/Hz (this matches proposed PSD-TX-mask in http://www.ieee802.org/3/cg/public/Nov2017/beruto_3cg_02a_117.pdf slide 7)
 - this is equivalent to ca. 84dBµV/10kHz
 - again MC=-30dB, gives 54dBµV/10kHz or 66dBµV/120kHz
- Evolution of emission limits (Number of electronic components goes up; electrical drives, sensors for auton. drive, car-2-car ...)
 - closer to 35dBµV/120kHz at 1MHz and 15dBµV/120kHz at 50MHz
- BCI: Severity Class IV (30dBm for 3-200MHz)
 - with 30dB MC: 316mV differential peak-amplitude on TP
 - DME might help here, but how much, is unclear ...

- Multi-Drop Link Segment
 - will have higher return loss, see measurements in <u>http://www.ieee802.org/3/cg/public/Sept2017/kaindl_matheus_3cg_01</u> <u>c_09_2017.pdf</u> (slide 14-16) → impact on signal integrity
 - should keep IL limit
 - expect mode conversion to "not be better" then p2p definition (?)
- Task force direction so far
 - 10Base-T1S is a single PHY; p2p and multi-drop only differ in the supported link length (?!)

Conclusion

- Putting current baseline proposals for 10Base-T1S together:
 - Point-2-Point: there is zero (in fact negative) margin between emissions and ingress with current link segment definition + transmitter bandwidth
- Multi-Drop Link Segment
 - will put more strain on signal integrity, therefore reduce margin
- → a baseline proposal for PMA electrical is premature and should be postponed after balancing out all requirements considered here
- → baseline for p2p link segement should be revisited

Thank you for your attention!

