

10 Mb/s Single Twisted Pair Ethernet 10BASE-T1L Transmit Amplitude (Comments #567, #671)

Steffen Graber Pepperl+Fuchs

IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force

- A 10BASE-T1L PHY supports two different operating modes:
 - 2.4 V_{pp} (optional) and
 - 1.0 V_{pp} (mandatory).
- Each PHY which is able to transmit in 2.4 V_{pp} operating mode must also be able to receive in 2.4 V_{pp} operating mode (even if there is only a short cable with no attenuation).
- The actual status of the 2.4 V_{pp} operating mode selection in Draft D2.0 is the following:
 - Bit 1.2294.12 in 10BASE-T1L PMA control register is used to select the 2.4 V_{pp} (if the bit is set to a one) or 1.0 V_{pp} operating mode (if the bit is set to a zero).
 - Annex 98B.3 (Auto-Negotiation) states that Bit A24 (in the base page) shall contain a one, if the PHY is supporting and advertising 2.4 V_{pp} operating mode. If both PHYs then advertise the ability to support the 2.4 V_{pp} operating mode, then this mode shall be enabled for both PHYs and the bit in 1.2294.12 shall be set accordingly by the Auto-Negotiation implementation.
- As this behavior may lead to a higher energy consumption and RF radiation than needed, this presentation suggests another approach.

- There are different requirements for different applications:
 - For PHYs operating in environments with a relatively low noise environment, energy saving and reduction of RF interference may be the main goal.
 - For PHYs operating in more severe noise environments, a higher transmit level at the expense of spending more energy for the transmitter would be beneficial.
 - For PHYs which only support a limited signal amplitude, as it is the case e.g. in intrinsically safe applications, a limited transmit amplitude is required.
- To handle these different conditions the idea is to advertise two different pieces of information about the operating mode during Auto-Negotiation:
 - 2.4 V_{op} mode is supported (bit A24, as it is currently in Draft D2.0).
 - 2.4 V_{pp} mode is preferred (additional bit (e.g. bit A25), which is advertised during Auto-Negotiation).
- Depending on how to handle the 2.4 V_{pp} preferred bit, there are two possible ideas:
 - Option 1: If at least one PHY sets the 2.4 V_{pp} mode preferred bit, then both PHYs switch to the 2.4 V_{pp} operating mode.
 This keeps both PHYs in sync related to the transmit amplitude.
 - Option 2: If one PHY sets the 2.4 V_{pp} mode preferred bit, then the only the remote PHY switches to the 2.4 V_{pp} operating mode. This allows to use different transmit amplitudes on both sides.

The following table gives an overview about how to handle the different application requirements for
 Option 1 (the 2.4 V_{pp} mode preferred bit activates the 2.4 V_{pp} mode on both PHYs):

Application	AN Advertising	Result
Normal EMC environment, e.g. office/building (default behavior)	2.4 V _{pp} mode is supported: Yes (Master and Slave) 2.4 V _{pp} mode is preferred: No (Master and Slave)	Even if both PHYs support the 2.4 V_{pp} operating mode, both PHYs start-up in 1.0 V_{pp} operating mode; if during the training at least one PHY detects, that it is running at a link with high insertion loss (implementation specific), the PHY may drop the link and Auto-Negotiation will restart the PHY. In this case the management entity of the PHY enables the "2.4 V_{pp} mode preferred bit" and in the next Auto-Negotiation attempt then the link will come up using the 2.4 V_{pp} operating mode.
More severe EMC environment, long links, e.g. trunk in industrial applications	 2.4 V_{pp} mode is supported: Yes (Master and Slave) 2.4 V_{pp} mode is preferred: Yes (Master or Slave) 	If both PHYs support the 2.4 V_{pp} operating mode and at least one PHY prefers to run in 2.4 V_{pp} operating mode, then both PHYs start-up in 2.4 V_{pp} operating mode and stay there.
Limited signal amplitude, e.g. powered intrinsically safe applications, spurs in industrial applications	 2.4 V_{pp} mode is supported: No (Master or Slave) 2.4 V_{pp} more is preferred: Not relevant. 	If at least one PHY does not support the 2.4 V_{pp} mode, both PHYs start-up in 1.0 V_{pp} operating mode and stay there .

The following table gives an overview about how to handle the different application requirements for
 Option 2 (the 2.4 V_{pp} mode preferred bit activates the 2.4 V_{pp} mode only on the remote PHY):

Application	AN Advertising	Result
Normal EMC environment, e.g. office/building (default behavior)	 2.4 V_{pp} mode is supported: Yes (Master and Slave) 2.4 V_{pp} mode is preferred: No (Master and Slave) 	Both PHYs start-up in 1.0 V_{pp} operating mode; if during the training a PHY detects, that it is running at a link with high insertion loss, the PHY may drop the link and Auto-Negotiation will restart the PHY. The management entity of the PHY enables the "2.4 V_{pp} mode preferred bit" and in the next Auto-Negotiation attempt the remote PHY will come up using the 2.4 V_{pp} operating mode.
Mixed operating mode	 2.4 V_{pp} mode is supported: Yes (Master and Slave) 2.4 V_{pp} mode is preferred: Only one side (Master or Slave) 	The remote PHY of the PHY having the 2.4 V_{pp} mode preferred bit set, starts-up in 2.4 V_{pp} operating mode and stays there. If this PHY detects during training, that the other PHY also needs to go into 2.4 V_{pp} operating mode, it may drop the link, set the "2.4 V_{pp} mode preferred bit" and Auto-Negotiation will bring up the other PHY in 2.4 V_{pp} operating mode.
More severe EMC environment, long links, e.g. trunk in industrial applications	 2.4 V_{pp} mode is supported: Yes (Master and Slave) 2.4 V_{pp} mode is preferred: Yes (Master and Slave) 	If both PHYs support the 2.4 V_{pp} operating mode and both PHYs prefer to run in 2.4 V_{pp} operating mode, then both PHYs start-up in 2.4 V_{pp} operating mode and stay there .
Limited signal amplitude, e.g. powered intrinsically safe applications, spurs in industrial applications	 2.4 V_{pp} mode is supported: No (Master or Slave) 2.4 V_{pp} more is preferred: Not relevant. 	If at least one PHY does not support the 2.4 V_{pp} mode, both PHYs start-up in 1.0 V_{pp} operating mode and stay there .

IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force

- Adding an additional "2.4 V_{pp} operating mode preferred" bit into the Clause 98 Auto-Negotiation Base Page (and also adding an associated bit in the 10BASE-T1L Configuration Register space) allows to better control the negotiation of the required transmit signal amplitude.
- The suggested default setting, which supports a start-up at a lower transmit amplitude, will allow to conserve some energy and to reduce the RF emissions for link segments, where a higher transmit amplitude is not necessary (which likely will be the case for most link segments), while providing a simple method of switching to a higher transmit amplitude, where it is required, e.g. if the insertion loss of the link segment is high.
- Having the possibility to prefer the 2.4 V_{pp} operating mode, supports applications, where a higher transmit amplitude is desired, e.g. if there is a more severe noise environment, even if the link segment length does not extend to the maximum reach.
- Having the ability to tell the remote PHY, that the local PHY does only support a 1.0 V_{pp} operating mode, allows also the use of a universal PHY in intrinsically safe applications, where the transmit amplitude has to be limited.
- Two different options exist, on how to set the operational mode of the PHY, depending on the 2.4 V_{pp} mode preferred bit. A decision by the task force is required, which option to use.

Thank You

IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force