IEEE 802.3 10Mb/s Backplane Ethernet Call For Interest Consensus Presentation

Amrik Bains, Cisco
David Tremblay, HPE
George Zimmerman, CME Consulting
Jon Lewis, Dell EMC
Mandeep Chadha, Microsemi

Orlando, FL
Nov 9th-12th, 2017
Introductions for today’s presentation

Presenters and Expert Panel:

Amrik Bains
David Tremblay
George Zimmerman
Jon Lewis
Mandeep Chadha

Cisco
HPE
CME Consulting
Dell EMC
Microsemi
Agenda

• Overview Discussion
 Jon Lewis, Dell EMC
• Presentations
 – 10BP in Servers
 Jon Lewis, Dell EMC
 – 10BP in Switches
 Amrik Bains, Cisco
 – 10BP Technical Feasibility
 Mandeep Chadha, Microsemi
 – 10BP Why Now?
 George Zimmerman, CME
• Q&A
• Straw Polls
CFI Objectives

• To gauge the interest in studying 10Mb/s Backplane Ethernet

• We do not need to:
 – Fully explore the problem
 – Debate strengths and weaknesses of solutions
 – Choose a solution
 – Create a PAR or 5 Criteria
 – Create a standard

• Anyone in the room may vote or speak
Overview: About 802.3cg/10SPE

- Single pair connection
- Low cost/data rate suitable for sensors
- Supports power and data
- Supports multiple reaches (e.g. 15m, 1000m, etc.)
- Targets Industrial and Building Automation installed cable
Overview: Intra-system Management Interface

- Internal serial control interfaces are common in server and switches.
- Existing serial interfaces form a high percentage of design/debug/support issues.
- 10SPE could replace a number of these (e.g., I2C/SMBus, MDIO).
- Systems shipping in 10s of millions annually contain high 10s to low 100s of these links.
- Implementations using FPGAs or micro controllers could support a “faster & richer” interface than existing interfaces and be easier to debug using standard Ethernet tools.
10BP in Servers
Jon Lewis, Dell EMC
Server market size info

- Total endpoint device >200 million parts per year
 - >20 endpoints per Server
- Total switch device >10 million per year
 - ~1 switch per Server
- 200 million endpoints
- 10 million switches
Current Architecture
Why 10BP?

• Ethernet provides a standard ubiquitous management communication path.
• Same number of pins as existing interfaces maintaining current pin count while increasing functionality.
• Ethernet allows for discovery of devices using a common driver.
 • Going from many custom drivers to a standard Ethernet driver greatly reduces coding complexity and validation time.
• As compute and network nodes “converge” there is a fine line between the server and the network
 • Bus Expanders
 • Chassis servers
 • Moduler server implémentations.
• Automated alert support is more robust than multi-master SMBus.
 • Using SMBus multiplexers makes multi-master difficult/impossible, requiring continuous bus scanning.
Desired Architecture
Switch market size info

• **Switch Market units per year**
 - **fixed switches** \(\sim x_1 \text{ million units per year} \)
 - **modular switches** \(\sim y_1 \text{ million units per year} \)

• **Average number of devices in**
 - **fixed switches** \(\sim x_2 \text{ endpoints, } \sim x_3 \text{ switches} \)
 - **modular switches** \(\sim y_2 \text{ endpoints, } \sim y_3 \text{ switches} \)

• **Total devices per year**
 - **endpoints** \(> z_1 \text{ million} \)
 - **switches** \(> z_2 \text{ million} \)
Current Switch Architecture

- Internal control plane is used to perform configuration/monitoring of components in the switch
- Many different components with various control plane interfaces, e.g.

- **I2C/SMB Bus**
 - Optical Module, AC/DC Power Supplies, FAN Control, DC-DC Converters, Temp monitors, EPROM etc.
 - 2 wire – Clock + Shared Data (Tx/Rx)
 - Clock speed 100KHz, data BW (25 to 30Kb/s) limited due half-duplex and protocol overhead

- **UART: Universal Asynchronous Rx/Tx**
 - Micro-controllers/CPU: Console port
 - 2 wire – Rx/Tx
 - 9.6Kb/s

- **MDIO (IEEE 802.3 Clause 22/45): Copper PHYs and Fiber PHYs**
 - 2 wire
 - Tx/Rx shared (half-duplex)
 - Max specified MDC clock of 2.5MHz (avg. BW 1Mb/s)

- **SPI**
 - SD card, Sensors, eMMC
 - Minimum of 4 wire – Clock, Rx, Tx and Save Select (in case of multiple devices connected to same data pins)
 - Typically 12 to 25Mb/s
 - Allows more data wires to used for higher bandwidth

- Management Interfaces have not kept up with BW requirements
- Different Software Drivers for each interface type
- Too many interface types
- I/O types limited on CPU – require external devices to expand I/O
- Multi-drop – subject multiple failure conditions
- Limited BW
- Multiple Software Driver requirements
- CPU has limited I/O – requires external devices to expand I/O
- Multi-drop – subject to failure
- SW Driver Variation – requires excessive tuning and validation
- Limited Bandwidth

Slide: David Tremblay, HPE

Nov 2017
Why 10BP?

- 2-wire: Reduce inter-connect
- 10Mb/s is higher usable bandwidth than we have today
 - 100Mb/s may be interesting in future
- Ethernet based – one common driver
- Switched Point-to-Point
 - for BW or hot-puggable devices
- Half-Duplex for low bandwidth and fixed devices
 - e.g., DC-DC, Temp monitors etc.
- Number of different I/O types reduced by using
- CPU I/O limitation for I2C/MDO removed
- Point-Point Ethernet for BW and or Hot-pluggable interfaces
- Ethernet Driver

![Desired Fixed Architecture Diagram]

- Switch Silicon
- DC-DCs
- Temp Monitors
- Optical Modules (up 48 ports)
- AC PS
- FANs

- Full Duplex (hot swap)
- Half-Duplex
- Full Duplex Ethernet (hot swap)

- 12 ports of single pair Full-Duplex Ethernet for BW
- 1G/10G
- PCIe
- Ethernet Management Port
- Console Port
- SPI memory
Desired Modular Architecture

- RBOM Reduction
- Point to Point Connectivity
- Single SW Driver
- Full Bandwidth Support

Slide: David Tremblay, HPE

Nov 2017
10BP Technology Feasibility

Mandeep Chadha, Microsemi
IEEE 802.3cg has a short reach link segment adopted
 – Based on cabling and connector measurements

Consistent with needs of backplane channels

Adopt the equations on slide 18 of

\[
\text{IL} < \begin{cases}
1 + 1.6 \times (f-1)/9 \text{ dB} & f=0.3 \ldots 10\text{MHz} \\
2.6 + 2.3 \times (f-10)/23 \text{ dB} & f=10 \ldots 33\text{MHz} \\
4.9 + 2.3 \times (f-33)/33 \text{ dB} & f=33 \ldots 40\text{MHz}
\end{cases}
\]

\[
\text{RL} > \begin{cases}
14 \text{ dB} & f=0.3\ldots 10\text{MHz} \\
14 - 10 \times \log_{10}(f/10) \text{ dB} & f=10\ldots 40\text{MHz}
\end{cases}
\]

\[
\text{MC} > \begin{cases}
30 \text{ dB} & f=0.3\ldots 20\text{MHz} \\
30 - 20 \times \log_{10}(f/20) \text{ dB} & f=20\ldots 200\text{MHz}
\end{cases}
\]
No issues with meeting proposed 10SPE Return Loss specifications

Insertion Loss spec proposed for 10SPE can be met for channels up to 40” FR4
10Mb/s Ethernet in Micros/FPGAs

• Low insertion loss of channel gives lots of choices
• Many encoding types available
 – Differential Manchester, NRZ, etc.
 – All are low-complexity and have been implemented in FPGA format
• Duplexing method is new for micros/FPGAs
 – E.g., echo-cancelled full-duplex or half-duplex on medium
 – Already under study in 802.3cg for short-reach channel
10BP Complexity Estimate

- Proposals under consideration for PHY implementations of short-reach 10SPE use easily realizable analog and digital circuits using standard logic processes
 - PMA
 - Differential line driver, analog hybrid/EC, clock sync
 - Digital
 - TX – PCS, Scrambler, Encoder
 - RX – Decoder, Descrambler, PCS
 - Construct as a macro that can be instantiated in ASIC or FPGA

10SPE short reach PHY proposal in slide 16 of Graber_3cg_12_0717.pdf

As a DME code has an inherent clock information this code would allow a simple clock synchronization also in half duplex multi-drop line topologies with end termination.
10BP - Why Now?

George Zimmerman, CME
Why Now?

- Interest from Network Equipment and Computer OEMs has created the potential for large volume short-reach interconnects
- Leverage investment in standardization of 10Mbps single-pair technology
 - Relevant PHY experts are gathered in IEEE 802.3cg
 - While 10Mbps Ethernet systems are old hat, there aren’t any single-pair versions standardized
 - Open and common interoperable specifications simplify the market
 - Requirements and needs are consistent with 802.3cg short-reach objective
- Every time I turn around, there’s a new application being proposed
- BUT: Existing 802.3cg project documentation is specific to “single balanced twisted pair copper cabling”
The Rub: 802.3cg PAR Scope, very specific

5.2.b. Scope of the project: Specify additions to and appropriate modifications of IEEE Std 802.3 to add 10 Mb/s Physical Layer (PHY) specifications and management parameters for operation, and associated optional provision of power, on single balanced twisted-pair copper cabling.

- Limitations: PHY & optional powering project, Rate = 10Mbps
- The medium is **single balanced twisted-pair copper cabling**
 - 2-pair, 4-pair, PCB backplane, parallel pairs, single ended are out of scope
- The Physics: addressing backplane applications is a natural
 - Including PCB “pairs”: The electrons don’t care about twisting the wires or read PAR documents...
- A standard can fill a broader need with 802.3cg solutions, avoiding proprietary extensions
Process

- Call for Interest on 10Mbps Backplane Ethernet to be held in November
- Study group will meet to propose PAR and CSD modifications for 802.3cg documents
 - Expect most work will be done quickly, by close of January meeting
 - Study group can pre-discuss any needed objectives modifications for 802.3cg
 - 802.3 approval of modified P802.3cg project documentation, targeted by March 2018
- Meanwhile, 802.3cg continues its work on short-reach and long reach PHYs
 - Contributors work offline to prepare and build consensus for any necessary text
 - Time to fold in anything necessary for backplane before May WG ballot milestone
- P802.3cg motion showed unanimous support: P802.3cg Sept’17 motion #15
- We’ve seen this before - adding 25GBASE-T to 40GBASE-T IEEE P802.3bq
 - Smaller scope of change than in 802.3bq – no new PHYs expected, no speed change (MAC interface, registers, or frequency translations)
Q&A

Presenters
Amrik Bains Cisco
George Zimmerman CME Consulting
Jon Lewis Dell EMC
Mandeep Chadha Microsemi

Expert Panel
David Tremblay HPE
Straw Polls
Call-for-Interest Consensus

• Should a study group be formed for “10Mb/s Backplane Ethernet”?

• Y: N: A:

• Room count:
Participation

• I would participate in a “10Mb/s Backplane Ethernet” study group in IEEE 802.3
 – Tally:

• My company would support participation in a “10Mb/s Backplane Ethernet” study group
 – Tally:
Future Work

• Ask 802.3 at Thursday’s closing meeting to form study group

• If approved:
 – 802 EC votes on Friday to approve the formation of the study group
 – First study group meeting would be during the January 2018 802.3 interim meeting (in Geneva)
End