Canova Tech The Art of Silicon Sculpting PIERGIORGIO BERUTO

IEEE802.3cg TF PHY-Level Collision Avoidance — Addendum #1

August 16th, 2017

ANTONIO ORZELLI

Control signals

Determinism

- Packet Ordering
 - Node level: node "A" transmits packets #0, #1 and #2 at times TO < T1 < T2. Packets shall be received in the same order exactly (#0, #1, #2) with unspecified latency.
 - This is guaranteed
 - − MAC procedures are synchronous → once a frame is waiting to be transmitted, the MAC does not process other frames until the current one is either transmitted or discarded because of excessive attempts.
 - » In PLCA proposal packets are NEVER discarded in such way as the packet is always transmitted within at maximum two attempts.
 - PHY is normally supposed to deliver the frame as soon as it's fed be the MAC.
 - » In PLCA proposal, the PHY shall buffer a *very short* portion of the packet in order to reduce latency.
 - » Not enough to allow misordering (would need to buffer at least two whole packets)
 - Network level: node "A" transmits packets #0, #1 and #2 while node "B" transmits packets #3, #4, #5 at times T0 < T3 < T1 < T4 < T2 < T5. Packets shall be received in the following order: #0, #3, #1, #4, #2, #5.
 - Not how ethernet works
 - Out of scope of PLCA proposal
- Latency
 - Best case (min) occurs when the MAC initiate TX just before handshaking time (\sim 0)
 - Worst case (max) occurs when the MAC initiate TX after handshaking time AND each other node commits to transmit a 1500 bytes packet (\sim 7ms for a six node network)
 - Comparison with CSMA/CD (see next slides)

Simulations

- Full digital simulation (verilog)
 - 4b/5b encoding + DME (25Mhz)
 - Use 5b codes S, R, T, H for COMMIT, YIELD, COMMIT/S, YIELD/S signaling

- PHY: standard 10BASE-T or PLCA model
- MAC: standard CSMA/CD capable MAC (802.3 clause 4)
 - host interface: DPRAM (one frame) + busy indication + size + trigger
 - PHY interface: MII (txd, txclk, txen, txer, rxd, rxclk, rxdv, rxer, col, crs)
- HOST: simple transmitter
 - wait for MAC BUSY = 0
 - wait random time between 0 and MTP (sim parameter, 0 = MAX speed)
 - write random data in DPRAM of size PKTSZ (sim. parameter 60 < PKTSZ < 1500) or random size
- SNIFFER: measuring throughput, latency
 - throughput: number of received bytes (excluding FCS, PREAMBLE) / total simulation time
 - latency: time between BUSY = 1 and BUSY = 0 for each node

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

Bitrate, N = 2

Throughput

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- Throughput
- 100 pkts, random size (60, 1500), variable MTP and N (number of nodes)
- Comparison between 10base-T (simple CSMA/CD) and PLCA

- 500 pkts, size = 60B, variable MTP, 6 nodes. Latencies in μ s.
- Comparison between 10base-T (simple CSMA/CD) and PLCA

МТР	MAX_LAT	AVG_LAT	STDEV		
0	57595.6	553.3	4826.0		
500	59692.8	1034.2	4637.4		
2000	29387.5	618.9	2298.2		
5000	19645.4	264.0	1035.7		
CSMA/CD					

МТР	MAX_LAT	AVG_LAT	STDEV
0	443.4	441.1	26.2
500	546.4	186.4	90.7
2000	269.2	74.8	31.6
5000	223.7	64.0	17.8

PLCA

- Average latencies not so different at high loads
- Huge difference on MAX latency and STD deviation (due to collisions / backoff)
- PLCA is much more "deterministic"

Join/ Leave

- Still static configuration of the IDs
- How to handle "disabled" nodes?
 - COMMIT/YIELD is expected to be sent within a determined time (HS timer).
 - On timeout, next node will COMMIT/YIELD as appropriate
 - HS timer shall be long enough to accommodate for PHY latency but as short as possible not to degrade performance
 - Simulations performed with HS_TIMER = $20\mu s$
 - Allows for ${\sim}16\,\mu s$ of HS latency
 - Simulated with random missing nodes
 - Negligible impact on performance
- PHY with ID = 0 (master) use COMMIT/S and YIELD/S for handshaking.
 - Slave nodes synchronize on xxx/S signals before joining the HS mechanism
 - link_status shall not be signaled until first sync
 - Nodes receiving bad COMMIT/YIELD shall not transmit and re-synchronize
 - if this happens to the master, this one shall wait until there is no data on the line for a certain amount of time, then re-start transmitting HS.

- Simulations
 - More use-cases?
- Robustness
 - Simulate errored ACK/NACK handling
 - Corner cases study
- Optional
 - Auto-negotiation of IDs (instead of static config)?
 - not actively working on that
 - possible IDEA: keep a "virtual slot" at the end of the HS.
 - PHYs can send specific code + ID + CRC to get enumerated at that moment
 - monitor for collisions and backoff
 - On-the-fly election of new master for failover?

Thank You !

