
IEEE802.3cg Page 1

Canova Tech
The Art of Silicon Sculpting

PIERGIORGIO BERUTO

ANTONIO ORZELLI

IEEE802.3cg TF

PLCA & Multiple Collisions
April 11th, 2018

IEEE802.3cg Page 2

Outline

• Some doubts were raised about MAC expected behavior when

CRS is high after a collision:

– According to one interpretation of clause 4, the MAC is allowed

to transmit after the back-off period despite the state of CRS

• This would mean that PLCA would not guarantee bounded latency and

fairness due to multiple collisions

– According to our understanding, the MAC shall wait for CRS de-

assertion before making a new transmit attempt

• PLCA actively relies on this to defer the transmission until the next

transmit opportunity is met

– no multiple collisions are possible with PLCA (max attempts = 1)

IEEE802.3cg Page 3

Test on real HW

• Dedicated FPGA code

1. detect TX_EN asserted

2. wait a few MII clock cycles

3. assert CRS

4. wait some more clock cycles

5. assert COL, keeping CRS asserted

6. Wait for manual command to de-assert CRS

Freescale
MPC8306

CPU

MAC FPGA

MII

• Embedded MAC

– Configured for 10 Mbps,

Half-Duplex operations

IEEE802.3cg Page 4

Step 1 - 5

CRS

TX_EN

COL

TXD

LINE

IEEE802.3cg Page 5

Step 1 - 5

CRS

TX_EN

COL

TXD

LINE

MAX BACK-OFF = 512 BT = 51.2 μs

NO NEW TRANSMISSION ATTEMPTS AFTER BACK-OFF
(CRS STILL HIGH)

IEEE802.3cg Page 6

Step 6

PACKET RE-TRANSMITTED AFETR CRS IS LOWERED
AND INTER-PACKET GAP ELAPSED

CRS

TX_EN

COL

TXD

LINE

IPG

IEEE802.3cg Page 7

Conclusions

• Multiple collisions with PLCA are not possible

– Back-off worst case time is 512 BT, which is less than the

minimum packet size

• Round-Robin access to the media is guaranteed under

any circumstance

– improves CSMA/CD

IEEE802.3cg Page 8

Thank You !

IEEE802.3cg Page 9

FORMAL

DEMONSTRATION

IEEE802.3cg Page 10

Cl 4.2.8: function TransmitLinkMgmt

attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding) and (not extend or lateCollisionCount = 0) do

{No retransmission after late collision if operating at 1000 Mb/s}

begin {Loop}

if bursting then {This is a burst continuation}

frameWaiting := true {Start transmission without checking deference}

else {Non bursting case, or first frame of a burst}

begin

if attempts>0 then BackOff;

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

if halfDuplex then deferred := true;

burstStart := true;

if burstMode then bursting := true

end;

lateCollisionError := false;

StartTransmit;

frameWaiting := false;

if halfDuplex then

begin

while transmitting do WatchForCollision;

if lateCollisionError then lateCollisionCount := lateCollisionCount + 1;

attempts := attempts + 1

end {Half duplex mode}

else while transmitting do nothing {Full duplex mode}

end; {Loop}

• Called to transmit

a packet

• Synchronous

function

IEEE802.3cg Page 11

Cl 4.2.8: function TransmitLinkMgmt (simplified)

attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding) and (not extend or lateCollisionCount = 0) do

{No retransmission after late collision if operating at 1000 Mb/s}

begin {Loop}

if bursting then {This is a burst continuation}

frameWaiting := true {Start transmission without checking deference}

else {Non bursting case, or first frame of a burst}

begin

if attempts>0 then BackOff;

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

if halfDuplex then deferred := true;

burstStart := true;

if burstMode then bursting := true

end;

lateCollisionError := false;

StartTransmit;

frameWaiting := false;

if halfDuplex then

begin

while transmitting do WatchForCollision;

if lateCollisionError then lateCollisionCount := lateCollisionCount + 1;

attempts := attempts + 1

end {Half duplex mode}

else while transmitting do nothing {Full duplex mode}

end; {Loop}

For half-duplex 10 Mbit/s:
• attemptLimit = 16
• bursting = False
• extend = False
• halfDuplex = True

[...] transmitSucceeding := true;
transmitting := true; [...]

not relevant

[...] Wait (slotTime x Random(0, maxBackOff)); [...]

maxBackOff is initially ‘2’ and increases
at each call to BackOff procedure but
as we’ll show we’re going to call this
one at most once

random integer between 0 and
maxBackOff – 1

if transmitSucceeding and collisionDetect then
[...] transmitSucceeding := false; [...]
[...] transmitting := false; [...]

This is set by PLCA (COL)

triggered
indirectly by
another process

not relevant

IEEE802.3cg Page 12

Cl 4.2.8: function TransmitLinkMgmt (simplified)
attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff));

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

deferred := true;

transmitSucceeding := true;

transmitting := true;

frameWaiting := false;

while transmitting do

if transmitSucceeding and collisionDetect then
begin

transmitSucceeding := false;

transmitting := false;

end

attempts := attempts + 1

end; {Loop}

What about deferring?

IEEE802.3cg Page 13

Cl 4.2.8: process Deference
if halfDuplex then cycle{Half duplex loop}

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

wasTransmitting := transmitting;

while carrierSense or transmitting do wasTransmitting := wasTransmitting or transmitting;

if wasTransmitting then Wait(interPacketGapPart1) {Time out first part of interpacket gap}

else begin

realTimeCounter := interPacketGapPart1;

repeat

while carrierSense do realTimeCounter := interPacketGapPart1;

Wait(1);

realTimeCounter := realTimeCounter – 1

until (realTimeCounter = 0)

end;

Wait(interPacketGapPart2); {Time out second part of interpacket gap}

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}

end {Half duplex loop}

else cycle {Full duplex loop}

[...]

end; {Deference} • The Deference process runs
asynchronously to continuously compute
the proper value for the variable deferring

IEEE802.3cg Page 14

Cl 4.2.8: process Deference (simplified)
if halfDuplex then cycle{Half duplex loop}

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

wasTransmitting := transmitting;

while carrierSense or transmitting do wasTransmitting := wasTransmitting or transmitting; nothing;

if wasTransmitting then Wait(interPacketGapPart1) {Time out first part of interpacket gap}

else begin

realTimeCounter := interPacketGapPart1;

repeat

while carrierSense do realTimeCounter := interPacketGapPart1;

Wait(1);

realTimeCounter := realTimeCounter – 1

until (realTimeCounter = 0)

end;

Wait(interPacketGapPart2); {Time out second part of interpacket gap}

Wait(interPacketGapPart1 + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}

end {Half duplex loop}

else cycle {Full duplex loop}

[...]

end; {Deference}

For 10 Mbit/s, and the sake of this presentation, this simplified to:
Wait(interPacketGapPart1 + interPacketGapPart2)

we’re half duplex...

IEEE802.3cg Page 15

Cl 4.2.8: process Deference (simplified)

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;

Wait(interPacketGapPart1 + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing; {Allow waiting transmission, if any}

Let’s put the two together in
case of PLCA collision

set by PLCA

IEEE802.3cg Page 16

Scenario

CRS forced HIGH to prevent the
MAC from transmitting until
CUR_ID = 3

CRS forced LOW to have the MAC
deliver the packet

• Node #1 and #3 want to transmit data, others are
silent

– PHY #1 just defers TX until its own transmit
opportunity is available

– PHY #3 signals a collision because PHY #1 is
transmitting

– PHY #3 re-transmits the packet at next transmit
opportunity

BEACON

No multiple collisions
- why ?

IEEE802.3cg Page 17

Scenario (from PHY#3 – MAC#3 perspective)

• Divide the problem in steps, following Pascal code

1. MAC #3 sends data to PHY #3 to transmit (PLCA starts buffering)

2. PHY #3 sees carrier and raise a (logical) collision

3. PHY #3 is allowed by PLCA to re-transmit

4. PHY #3 receives data from MAC

BEACON

2 3 41

IEEE802.3cg Page 18

Step #1
attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff));

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

deferred := true;

transmitSucceeding := true;

transmitting := true;

frameWaiting := false;

while transmitting do

if transmitSucceeding and collisionDetect then
begin

transmitSucceeding := false;

transmitting := false;

end

attempts := attempts + 1

end; {Loop}

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;

Wait(interPacketGapPart1 + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}

• MAC #3 is transmitting

data (PLCA is buffering)

VARIABLE VAL

attempts 0

deferring false

transmitSucceeding false

transmitting false

frameWaiting false

VARIABLE VAL

attempts 0

deferring false

transmitSucceeding true

transmitting true

frameWaiting false

IEEE802.3cg Page 19

Step #2
attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff));

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

deferred := true;

transmitSucceeding := true;

transmitting := true;

frameWaiting := false;

while transmitting do

if transmitSucceeding and collisionDetect then
begin

transmitSucceeding := false;

transmitting := false;

end

attempts := attempts + 1

end; {Loop}

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;

Wait(interPacketGapPart1 + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}

• PLCA signals a collision

• TransmitLinkMgmt breaks transmitting loop after jam

• TransmitLinkMgmt perform back-off (0 or 1 slot)

• TransmitLinkMgmt waits “deferring”

• Deference Process waits for carrierSense de-assertion

VARIABLE VAL

attempts 0

deferring false

transmitSucceeding true

transmitting true

frameWaiting false

VARIABLE VAL

attempts 1

deferring true

transmitSucceeding false

transmitting false

frameWaiting true

IEEE802.3cg Page 20

Step #3
attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff));

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

deferred := true;

transmitSucceeding := true;

transmitting := true;

frameWaiting := false;

while transmitting do

if transmitSucceeding and collisionDetect then
begin

transmitSucceeding := false;

transmitting := false;

end

attempts := attempts + 1

end; {Loop}

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;

Wait(interPacketGapPart1 + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}

• PLCA meets a transmit opportunity

– carrierSense is de-asserted

• TransmitLinkMgmt still deferring

• Deference Process waits for IPG

• PLCA sends COMMIT to halt CUR_ID progress

VARIABLE VAL

attempts 1

deferring true

transmitSucceeding false

transmitting false

frameWaiting true

VARIABLE VAL

attempts 1

deferring true

transmitSucceeding false

transmitting false

frameWaiting true

IEEE802.3cg Page 21

Step #4
attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff));

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

deferred := true;

transmitSucceeding := true;

transmitting := true;

frameWaiting := false;

while transmitting do

if transmitSucceeding and collisionDetect then
begin

transmitSucceeding := false;

transmitting := false;

end

attempts := attempts + 1

end; {Loop}

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;

Wait(interPacketGapPart1 + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}

• MAC delivers data to the PHY

• No collisions are possible since
CUR_ID == 3

– packet is sent successfully!

VARIABLE VAL

attempts 1

deferring true

transmitSucceeding false

transmitting false

frameWaiting true

VARIABLE VAL

attempts 1

deferring false

transmitSucceeding true

transmitting true

frameWaiting false

IEEE802.3cg Page 22

End of transmission
attempts := 0

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff));

frameWaiting := true;

while deferring do {Defer to passing frame, if any}

deferred := true;

transmitSucceeding := true;

transmitting := true;

frameWaiting := false;

while transmitting do

if transmitSucceeding and collisionDetect then
begin

transmitSucceeding := false;

transmitting := false;

end

attempts := attempts + 1

end; {Loop}

while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;

Wait(interPacketGapPart1 + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}

• Packet is sent

• Deference Process

– sees carrierSense due to own transmission

– waits IPG

– starts over

• When TransmitLinkMgmt is invoked again

– attempts is reset (!!)

VARIABLE VAL

attempts 1

deferring false

transmitSucceeding true

transmitting true

frameWaiting false

VARIABLE VAL

attempts 0

deferring false

transmitSucceeding false

transmitting false

frameWaiting false

