Canova Tech

The Art of Silicon Sculpting

PIERGIORGIO BERUTO
ANTONIO ORZELLI

[EEEB02. 3cg TF

PLCA & Multiple Collisions
April 17", 2018

|EEE802.3cg Page 1

Outline

* Some doubts were raised about MAC expected behavior when
CRS is high after a collision:

— According to one interpretation of clause 4, the MAC s allowed
to transmit after the back-off period despite the state of (RS

* This would mean that PLCA would not guarantee bounded latency and
fairness due to multiple collisions

— According to our understanding, the MAC shall wait for (RS de-
assertion before making a new transmit attempt

* PLCA actively relies on this to defer the transmission until the next
transmit opportunity is met

— no multiple collisions are possible with PLCA (max attempts = 1)

|EEE802.3cq Page 2

Test on real HW

Ml
Freescale
MPC8306 MAC FPGA
CPU
e Embedded MAC * Dedicated FPGA code

1. detect TX_EN asserted

2. wait a few MIl clock cycles
3. assert (RS

4. wait some more clock cycles
5

6

— Configured for 10 Mbps,
Half-Duplex operations

assert COL, keeping CRS asserted
Wait for manual command to de-assert CRS

|EEE802.3cq Page 3

Acquisition 1s stopped.
1.00 GSass 200 kpts

IEEE802.3cg Page 4

Acquisition 1s stopped.
1.00 GSass 200 kpts

IEEE802.3cg Page 5

Acquisition 1s stopped.
1.00 G5afs 500 kpts

PACKET RE-TRANSMITTED AFETR CRS IS LOWERED
AND INTER-PACKET GAP ELAPSED

IEEE802.3cg Page 6

Conclusions

* Multiple collisions with PLCA are not possible

— Back-off worst case time is 512 BT, which is less than the
minimum packet size

* Round-Robin access to the media is guaranteed under
any circumstance

—improves CSMA/CD

|EEE802.3cq Page 7

Thank You |

FORMAL
DEMONSTRATION

(1 4.2.8: function TransmitLinkMgmt

attempts :=0
transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding) and (not extend or lateCollisionCount = 0) do
{No retransmission after late collision if operating at 1000 Mb/s}
begin {Loop}
if bursting then {This is a burst continuation}
frameWaiting := true {Start transmission without checking deference}
else {Non bursting case, or first frame of a burst}

begin
if attempts>0 then BackOff; .
frameWaiting := true; o c I I d -I- -I- -I-
while deferring do {Defer to passing frame, if any} u e O ru n S m I
if halfDuplex then deferred := true;
burstStart := true;
if burstMode then bursting := true p k 1'
0 packe

lateCollisionError := false;

e * Synchronous

if halfDuplex then

begi .
o while transmitting do WatchForCollision; fU n cll' I 0 n

if lateCollisionError then lateCollisionCount := lateCollisionCount + 1;
attempts := attempts + 1
end {Half duplex mode}
else while transmitting do nothing {Full duplex mode}
end; {Loop}

IEEE802.3cq

(1'4.2.8: function TransmitLinkMgmt (simplified)

attempts :=0
transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding) and-{net-extend-orlateColisionCount=-0)-do
E L fror | lision if .)
begin {Loop}

i bursting-then-{This is-a burst continuation} maxBackOff is initially ‘2" and increases

iting—= ssi i i at each call to BackOff procedure but
else{Nonbursting-case—or first frame-of a-burst} / as we’ll show we’re going to call this
begin one at most once

if attempts>0 then BackOff; —— [...] Wait (slotTime x Random(0, maxBackOff)); [...]

frameWaiting := true;
while deferring do {Defer to passing frame, if any} \ random integer between 0 and

ifhalfDuplex-then- = ;
burstStart = true: deferred := true maxBackOff — 1

end;

This is set by PLCA (COL
notrelevant | JateCoMisionError—=false: / IS 1S set by (COL)

. _ | [...]transmitSucceeding := true; —
StartTran_sr_nlt, a] " | transmitting := true; [...] if transmitSucceeding and collisionDetect then triggered
_frameWaltlng = false; [...] transmitSucceeding := false; [...]

» indirectly by

*‘f‘ha_l'f‘DHPleX—then [...] transmitting := false; [...] P>
begin / another process
while transmitting do WatchForCollision;

not relevant

attempts := attempts + 1

end-{Half duplex-mode} For half-duplex 10 Mbit/s:
else-while-transmitting-do-nething-{Ful-duplex-mede} L.
end: {Loop} e attemptLimit=16

* bursting = False
e extend = False
e halfDuplex = True

|EEE802.3cg Page 11

(1'4.2.8: function TransmitLinkMgmt (simplified)

transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)
begin {Loop}
if attempts>0 then Wait (slotTime x Random(0, maxBackOff));
frameWaiting := true;
while deferring do {Defer to passing frame, if any}
deferred := true;

transmitSucceeding := true;
transmitting := true;
frameWaiting := false;

while transmitting do
if transmitSucceeding and collisionDetect then
begin
transmitSucceeding := false;
transmitting := false;
end

attempts := attempts + 1
end; {Loop}

What about deferring?

|EEE802.3cg Page 12

(1 4.2.8: process Deference

if halfDuplex then cycle{Half duplex loop}
while not carrierSense do nothing; {Watch for carrier to appear}
deferring := true; {Delay start of new transmissions}
wasTransmitting := transmitting;
while carrierSense or transmitting do wasTransmitting := wasTransmitting or transmitting;
If wasTransmitting then Wait(interPacketGapPart1) {Time out first part of interpacket gap}

else begin
realTimeCounter := interPacketGapPart1;
repeat
while carrierSense do realTimeCounter := interPacketGapPart1;
Wait(1);

realTimeCounter ;= realTimeCounter — 1
until (realTimeCounter = 0)

end,;

Wait(interPacketGapPart2); {Time out second part of interpacket gap}

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing {Allow waiting transmission, if any}
end {Half duplex loop}
else cycle {Full duplex loop}

end;{DefereE{;;'g} * The Deference process runs

asynchronously to continuously compute
the proper value for the variable deferring

|EEE802.3cq Page 13

(1 4.2.8: process Deference (simplified)

HhalfDuplex-then-cyeclefHalf duplexloop}
while not carrierSense do nothing; {Watch for carrier to appear}
deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do wasFransmitting-——wasTransmitting-or-transmitting; nothing;
i AR i aatl ‘3 -‘-,‘.. “'. etGapPa "‘3. i Pd 0 “=. et Oadp
— F¥epeat
7 i . For 10 Mbit/s, and the sake of this presentation, this simplified to:
—F@&Ile-@@@H—n—t@r—.—F@&FFFmegeHﬂter—]: Wait(interPacketGapPart1 + interPacketGapPart2)
—end:

it ket). 1T I T I }
Wait(interPacketGapPartl + interPacketGapPart2);
deferring := false; {Allow new transmissions to proceed}
while frameWaiting do nothing {Allow waiting transmission, if any}

end-{Hal-duplexleop}
elseeyele-{Ful-duplexltoop}
]

end: {Deference}

we’re half duplex...

|EEE802.3cg Page 14

(1 4.2.8: process Deference (simplified)

/ set by PLCA

while not carrierSense do nothing; {Watch for carrier to appear}
deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;
Wait(interPacketGapPartl + interPacketGapPart2);

deferring := false; {Allow new transmissions to proceed}

while frameWaiting do nothing; {Allow waiting transmission, if any}

Let’s put the two together in
case of PLCA collision

|EEE802.3cq Page 15

Scenario

BEACOI{A
LINE { B { /| DATA i { IDLE/) DATA
TXEN / Ji JR !
5| ™0 72 DATA i % %%
£| crs / J J} \ |
coL I ! [
TXEN / ﬂ_\ / 15[_/
g TXD 7 DATA \ M7 7 70 DATA
| cRs / Ji Ji / \ [[
coL / _/ ! !
CUR_ID 7\ 0 A /I Il /X2 | i 3
* Node #1 and #3 want to transmit data, others are / v
silen’r CRS forced HIGH to prevent the CRS forced LOW to have the MAC
MAC from transmitting until deliver the packet
— PHY #1 just defers TX until its own transmit CUR_ID=3

opportunity is available
— PHY #3 signals a collision because PHY #1 is

transmitting | No multiple collisions
— PHY #3 re-transmits the packet at next transmit
opportunity - Why ?

|EEE802.3cq Page 16

Scenario (from PHY#3 — MAC#3 perspective)

BEACON
"

LINE { B { /| DATA i { IDLE/ DATA
TXEN Ji JR !
E ™D 0 DATA i % 7
| CRs / Ji Ji \ f

coL I I [

TXEN ﬂ_\ I 15[_/
E XD 72 DATA \ M7 7 70 DATA
Il CRS Ji Ji //

coL — _J [[

CUR_ID 7) 0) /| 1 i o2 [/

* Divide the problem in steps, following Pascal code
1. MAC#3 sends data to PHY #3 to transmit (PLCA starts buffering)
2. PHY #3 sees carrier and raise a (logical) collision
3. PHY #3is allowed by PLCA to re-transmit
4. PHY #3 receives data from MAC

|EEE802.3cg Page 17

Step #1

transmitSucceeding := false I:> while not carrierSense do nothing; {Watch for carrier to appear}

. _ . . deferring := true; {Delay start of new transmissions}
while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff)); while carrierSense or transmitting do nothing;
frameWaiting := true; Wait(interPacketGapPart1 + interPacketGapPart2);
% while deferring do {Defer to passing frame, if any} deferring := false; {Allow new transmissions to proceed}
deferred := true; while frameWaiting do nothing {Allow waiting transmission, if any}

transmitSucceeding := true;
transmitting := true;
frameWaiting := false;

I:> while transmitting do

Y geté?rr]]smitSucceeding and collisionDetect then ® MAC # 3 i S -I-ru n S m i-I--I-i n g

transmitSucceeding := false;
transmitting := false;

data (PLCA is buffering)

attempts := attempts + 1
end; {Loop}

VARIABLE VAL VARIABLE VAL

attempts 0 attempts 0

deferring false deferring false
transmitSucceeding false ‘ transmitSucceeding true
transmitting false transmitting true
frameWaiting false frameWaiting false

IEEE802.3cq

attempts :=0
transmitSucceeding := false

while (attempts < attemptLimit) and (not transmitSucceeding)
begin {Loop}
if attempts>0 then Wait (slotTime x Random(0, maxBackOff));
frameWaiting := true;
I:> while deferring do {Defer to passing frame, if any}
deferred := true;

transmitSucceeding := true;
transmitting := true;
frameWaiting := false;
R while transmitting do
if transmitSucceeding and collisionDetect then
begin
transmitSucceeding := false;
transmitting := false;
end

attempts := attempts + 1

end; {Loop}
VARIABLE VAL
attempts 0

deferring false
transmitSucceeding true ‘

transmitting true

frameWaiting false

Step #2

i while not carrierSense do nothing; {Watch for carrier to appear}
deferring := true; {Delay start of new transmissions}

|:> while carrierSense or transmitting do nothing;
Wait(interPacketGapPart1 + interPacketGapPart2);
deferring := false; {Allow new transmissions to proceed}
while frameWaiting do nothing {Allow waiting transmission, if any}

PLCA signals a collision

TransmitLinkMgmt breaks transmitting loop after jam
TransmitLinkMgmt perform back-off (0 or 1 slot)
TransmitLinkMgmt waits “deferring”

Deference Process waits for carrierSense de-assertion

VARIABLE VAL

attempts 1

deferring true
transmitSucceeding false
transmitting false
frameWaiting true

IEEE802.3cq

Step #3

transmitSucceeding := false while not carrierSense do nothing; {Watch for carrier to appear}

. . . . deferring := true; {Delay start of new transmissions}
while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff)); b While carrierSense or transmitting do nothing;
frameWaiting := true; |:> Wait(interPacketGapPartl + interPacketGapPart2);
|:> while deferring do {Defer to passing frame, if any} deferring := false; {Allow new transmissions to proceed}

deferred := true; while frameWaiting do nothing {Allow waiting transmission, if any}
transmitSucceeding := true;
transmitting := true;
frameWaiting := false;

while transmitting do e PLCA meets a transmit opportunity
if transmitSucceeding and collisionDetect then . .
begin — carrierSense is de-asserted
transmitSucceeding := false; al . .
transmitting -= false: * TransmitLinkMgmt still deferring
end * Deference Process waits for IPG
attempts := attempts + 1 ° PLCA sends COMMIT to halt CUR_ID progress
end; {Loop}

VARIABLE VAL VARIABLE VAL

attempts 1 attempts 1

deferring true deferring true
transmitSucceeding false ‘ transmitSucceeding false
transmitting false transmitting false
frameWaiting true frameWaiting true

IEEE802.3cq

Step #4

transmitSucceeding := false |:> while not carrierSense do nothing; {Watch for carrier to appear}

. . . . deferring := true; {Delay start of new transmissions}
while (attempts < attemptLimit) and (not transmitSucceeding)

begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff)); ~ while carrierSense or transmitting do nothing;
frameWaiting := true; e Wait(interPacketGapPartl + interPacketGapPart2);
while deferring do {Defer to passing frame, if any} deferring := false; {Allow new transmissions to proceed}

deferred := true; while frameWaiting do nothing {Allow waiting transmission, if any}

transmitSucceeding := true;
transmitting := true;
frameWaiting := false;

B q while transmitting do MAC delivers data to the PHY

$¢ if transmitSucceeding and collisionDetect then

begin L. . .
transmitSucceeding := false; * No collisions are possible since
transmitting := false;

CUR_ID ==

attempts := attempts + 1

end: {Loop} — packet is sent successfully!

VARIABLE VAL VARIABLE VAL

attempts 1 attempts 1
deferring true deferring false
transmitSucceeding false ‘ transmitSucceeding true
transmitting false transmitting true
frameWaiting true frameWaiting false

IEEE802.3cq

End of transmission

attempts :=0
transmitSucceeding := false

|:> while (attempts < attemptLimit) and (not transmitSucceeding)
begin {Loop}

if attempts>0 then Wait (slotTime x Random(0, maxBackOff));

frameWaiting := true;
while deferring do {Defer to passing frame, if any}
deferred := true;

transmitSucceeding := true;
transmitting := true;
frameWaiting := false;
R while transmitting do
$¢ if transmitSucceeding and collisionDetect then
begin
transmitSucceeding := false;
transmitting := false;
end

attempts := attempts + 1

end; {Loop}
attempts 1
deferring false
transmitSucceeding true
transmitting true
frameWaiting false

|:> while not carrierSense do nothing; {Watch for carrier to appear}

deferring := true; {Delay start of new transmissions}

while carrierSense or transmitting do nothing;
Wait(interPacketGapPartl + interPacketGapPart2);
deferring := false; {Allow new transmissions to proceed}

$¢ while frameWaiting do nothing {Allow waiting transmission, if any}

Packet is sent
Deference Process
— sees carrierSense due to own transmission
— waits IPG
— starts over
When TransmitLinkMgmt is invoked again
— attempts is reset (1)

VARIABLE VAL

attempts 0

deferring false
transmitSucceeding false
transmitting false
frameWaiting false

IEEE802.3cq

