
IEEE802.3cg Page 1

Canova Tech
The Art of Silicon Sculpting

PIERGIORGIO BERUTO

ANTONIO ORZELLI

IEEE802.3cg TF

T1S scrambler proposal
March 28th, 2018

IEEE802.3cg Page 2

Supporters

• Martin Miller (Microchips)

• Steffen Graber (Pepperl+Fuchs)

IEEE802.3cg Page 3

Outline

• Several contributions in the group to add scrambling in 10BASE-

T1S

– http://www.ieee802.org/3/cg/public/adhoc/AlternateScrambleScheme_

20180228.pdf

– http://www.ieee802.org/3/cg/public/adhoc/tazebay_8023cg_further_t

houghts_on_scrambling.pdf

– http://www.ieee802.org/3/cg/public/Jan2018/tazebay_3cg_01b_0118

.pdf

• There’s general consensus in 802.3cg to define a scrambler for

the T1S to improve EMI performance in case of repetitive patterns

in packets payload

– Not needed for BLW compensation as DME is intrinsically balanced

http://www.ieee802.org/3/cg/public/adhoc/AlternateScrambleScheme_20180228.pdf
http://www.ieee802.org/3/cg/public/adhoc/tazebay_8023cg_further_thoughts_on_scrambling.pdf
http://www.ieee802.org/3/cg/public/Jan2018/tazebay_3cg_01b_0118.pdf

IEEE802.3cg Page 4

Effect of scrambler x15+x4+1 after 4B/5B enc.

• Continuous stream of 1530 bytes packets

• RBW = 10 KHz, VBW = 100 Hz

• 15 bit, fixed seed scrambler vs NO scrambler

• Payload of all 0x00, all 0xFF or all 0x55

• More than 25 dB difference in peak PSD

-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20 25 30 35 40

P
SD

 (
d

B
m

)

freq (MHz)SCR(5B) vs NO SCRAMBLER

SCR

NOSCR

IEEE802.3cg Page 5

Where to scramble?

• In principle scrambling after 4B/5B gives the best EMI performance (full randomization)

• However 4B/5B coding has properties:

– 5B symbols that don’t map on 4B data can be used for intra-PHY signaling

• T1S PHY uses special symbol ‘J’, ‘K’, ‘T’, ‘R’ for SSD/ ESD
– PLCA also uses ‘N’ for BEACON

• JJ, JK, NN sequences are unique, allowing for synchronization and proper alignment to 5B boundary

• Scrambling the 5B symbols would kill these properties, adding complexity to the PHY

– Having a mix of scrambled and unscrambled bits on the line (preamble / data) also looks bad
from a system definition perspective

• Scrambling before 4B/5B encoding would preserve current architecture

– What about EMI performance?

4B/5B SCRAMBLER
DME

Encoder

4B/5BSCRAMBLER
DME

Encoder

MII data Line

IEEE802.3cg Page 6

Side stream scrambler x15+x4+1

-75

-65

-55

-45

-35

-25

-15

0 5 10 15 20 25 30 35 40

P
SD

 (
d

B
m

)

freq (MHz)SCR(5B) vs SCR(4B)

5B

4B

~1.8 dB

• Continuous stream of 1530 bytes packets

• RBW = 10 KHz, VBW = 100 Hz

• 15 bit, fixed seed scrambler

• Payload of all 0x00, all 0xFF or all 0x55

• Less than 2dB peak difference in PSD measure

SCR after 4B/5B

SCR before 4B/5B

IEEE802.3cg Page 7

What scrambler?

• Side-Stream (additive) scrambler

• Does not propagate errors

• Requires a seed

– Fixed seed: simplest solution but...
• Killer packet problem: it is possible to manufacture a packet that “resonates” with the scrambler resulting in a sequence

of repetitive data

– Not a problem for the receiver as DME is inherently balanced

– Problem from EMI perspective (same as not having the scrambler at all)

– Random seed: solves the killer packet problem but...
• Adds complexity to the PHY: how to sync the scrambler?

– T1S has no training sequence, no continuous idle (would not be possible on the mixing segment anyway)

• Sending the seed in the preamble looks like a possibility, however...

– Seed must be sent at least twice to allow error detection: not enough bytes in the preamble! Would preclude 802.3br

– Adds complexity to both receiver and transmitter

Side-Stream
scrambler example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+
+IN OUT

IEEE802.3cg Page 8

What scrambler? (cont.)

• Self-Synchronizing (multiplicative) scrambler

• Does not require a seed (self-synchronizing)

– Very easy to implement

– Requires exactly a number of bits equal to its degree to achieve lock (only 2 bytes for a 15 bit
scrambler)

• Propagates errors

– A two tap descrambler multiplies input errors by three

• In principle, error detection could be compromised

– Is it really a problem for 10BASE-T1S?

• Same EMI performance of side-stream scrambler

– Measured PSD depends on polynomial, not on scrambler type

Self-Synchronizing
scrambler example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+

+IN

OUT

IEEE802.3cg Page 9

Error propagation
• Ethernet FCS can detect up to 4 errors with 100% chance for packets up to 91607 bits

– Can also detect with 100% chance one 32-bit burst error or two 9-bit burst errors in a single data unit

– Multiplying the number of errors by three sounds like FCS strength would be compromised

– Propagated errors, however, are not independent from each other (they’re generated by the scrambler
polynomial)

• Let’s see

– G(x) = 802.3 CRC32 = x32+ x26+ x23+ x22+ x16+ x12+ x11+ x10+ x8+ x7+ x5+ x4+ x2+ x+1

• Not reducible in GF(2)

– D(x) = packet payload including FCS S(x) = scrambler polynomial E(x) = error polynomial

– Transmitted data unit (multiplicative scrambler):
S(x) * D(x)

– At receiver:
S(x) * D(x) + E(x)

– After de-scrambling:
S(x) * (S(x) * D(x) + E(x)) = D(x) + S(x) * E(x)

– FCS at receiver
{ D(x) + S(x) * E(x) } / G(x) = D(x) / G(x) + S(x) * E(x) / G(x)

• Reminder of D(x) / G(x) is the original FCS (without errors)

• FCS collision (undetected error) if-f reminder of S(x)*E(x) / G(x) = 0

– If E(x) is divisible by G(x) we have a collision

• but doesn’t depend on the scrambler ignore this case

– Else if S(x) has at least one prime factor in common with G(x), remaining factors may cancel up with E(x) thus causing a collision

• That would indeed weaken the FCS

– However G(x) is non reducible as long as S(x) order is less than G(x) order, reminder will always be ≠ 0

• FCS strength not altered by choosing a scrambler polynomial of degree less than 32

!

IEEE802.3cg Page 10

Self-Synchronizing scrambler x17+x14+1

-75

-65

-55

-45

-35

-25

-15

0 5 10 15 20 25 30 35 40

P
SD

 (
d

B
m

)

freq (MHz)SCR(5B) vs SCR(4B)

5B

4B

~1.1 dB

• Continuous stream of 1530 bytes packets

• RBW = 10 KHz, VBW = 100 Hz

• 17 bit, multiplicative scrambler

• Payload of all 0x00, all 0xFF or all 0x55

• ~1.1 dB peak difference in PSD measure

Side-Stream SCR after 4B/5B

Self-Sync SCR before 4B/5B

IEEE802.3cg Page 11

Scrambling proposal

• Scrambler polynomial: x17+x14+1

• Start scrambling MII data (including preamble) after JJJK

• SYNC, SSD, ESD, ESDOK, ESDERR and BEACON are NOT scrambled

– 4B/5B coding properties preserved

– JJJK is good for synchronizing DME (00011 00011 00011 10001)

• Minimal changes to clause 147, no changes to clause 148

J J J K 5 5 5 5 5 5 5 5 5 5 5 D PAYLOAD T RTX

SYNC + SSD SCRAMBLED PREAMBLE SCRAMBLED DATA ESD + ESDOK

J J J K X X X X X 5 5 5 5 5 5 D PAYLOAD T RRX

SCRAMBLER
SYNCING

802.3br RELY ON THESE

IEEE802.3cg Page 12

Proposed text changes

• 147.1.2 Operation of 10BASE-T1S

– The 10BASE-T1S PHY utilizes two level Differential

Manchester Encoding (DME) modulation transmitted at a

12.5 MBd rate (± TBD). A 17-bit self-synchronizing

scrambler is used to improve the EMC performance. 4B/5B

encoding is used to further improve EMC performance and

to perform out-of-band signaling among the connected

PHYs. […]

– The 4B/5B mapping is and the scrambler are contained in

the PCS (see 147.2) while the DME encoder/decoder is

contained in the PMA (see 147.4).

IEEE802.3cg Page 13

Proposed text changes (cont.)

• 147.2.2.3 Functions

– ENCODE In the PCS transmit process, this function

takes as its arguments the pcs_txd input

one data nibble, scrambles it into Sdn[3:0]

as defined in 147.2.2.5 and returns the

corresponding 5B symbol as defined in

Table 147–1.

IEEE802.3cg Page 14

Proposed text changes (cont.)
• 147.2.2.5 Self-synchronizing scrambler

The PCS Transmit function shall implement multiplicative scrambling using the following generator
polynomial:

𝑔 𝑥 = 1 + 𝑥14 + 𝑥17

An implementation of self-synchronizing scrambler by linear-feedback shift register is shown in figure
TBD#1. The bits stored in the shift register delay line at time n are denoted by Scrn[16:0]. At every
MII clock cycle, for each bit of TXD[3:0] the scrambler is advanced by one bit, and the output bit Sdn[i]
represented by the exclusive OR of Scrn[13], Scrn[16] and TXD[i] is shifted in as Scrn+1[0], with i
ranging from 0 to 3 (i.e. LSB first). The scrambler is reset upon execution of the PCS Reset function. If
PCS Reset is executed, all bits of the 17-bit vector representing the self-synchronizing scrambler state
are arbitrarily set. The initialization of the scrambler state is left to the implementer. In no case shall
the scrambler state be initialized to all zeros.

T T

Scrn[0] Scrn[1]

T T

Scrn[13] Scrn[14]

T T

Scrn[15] Scrn[16]

+

TXDn[i]

Sdn[i]

+

Figure TBD#1

IEEE802.3cg Page 15

Proposed text changes (cont.)

• 147.2.3.2 Functions

– DECODE In the PCS Receive process, this function

takes as its arguments the sym_rx input

data from PMA one 5B symbol, decodes the

corresponding nibble as defined in Table

147-1 and returns the descrambled result as

defined in 147.2.3.4. and returns the

corresponding 4B MII data as defined in

Table 147–1. If a violation of the encoding

rules is detected, PCS Receive asserts the

signal RX_ER for at least one symbol period.

IEEE802.3cg Page 16

Proposed text changes (cont.)

• 147.2.3.1 Variables

receiving [...]

precnt counter for preamble regeneration

pcs_rxdv [...]

IEEE802.3cg Page 17

Proposed text changes (cont.)
• 147.2.3.4 Self-synchronizing descrambler

The PCS Receive function shall descramble the 5B4B decoded data stream and return the proper nibble
for generation of RXD[3:0] to the MII. The descrambler shall employ the polynomial defined in
147.2.2.5. An implementation of self-synchronizing descrambler by linear-feedback shift register is
shown in figure TBD#2. The bits stored in the shift register delay line at time n are denoted by
Dcrn[16:0]. At every MII clock cycle, each bit of Srn[3:0] is shifted in as new Scrn[0] and the descrambler
is advanced by one bit. The output bit RXD[i] represented by the exclusive OR of Dcrn[13], Dcrn[16] and
Drn[i] is generated, with i ranging from 0 to 3 (i.e. LSB first). The descrambler is reset upon execution
of the PCS Reset function. If PCS Reset is executed, all bits of the 17-bit vector representing the self-
synchronizing descrambler state are arbitrarily set. The initialization of the descrambler state is left
to the implementer.

Figure TBD#2

T T

Scrn[0] Scrn[1]

T T

Scrn[13] Scrn[14]

T T

Scrn[15] Scrn[16]

+

Srn[i]

RXDn[i]

+

IEEE802.3cg Page 18

Proposed text changes (cont.)

RSCD *
precnt = 9

precnt = precnt + 1

precnt = 0

RSCD *
precnt ≠ 9

EDIT. NOTE:
fig 147-5 and
147-6 could
be merged

IEEE802.3cg Page 19

Conclusions

• A scrambler improves EMI performance

– Peak reduction of at least 25 dB in emission PSD

• Scrambling before 4B/5B encoder gives ~1.1 dB less margin than
scrambling after 4B/5B on the peak PSD but

– Keeps 4B/5B features, preserving current architecture

– Simpler solution, lower PHY complexity

– Minimizes spec changes

• Self-Synchronizing (multiplicative) scrambler looks better

– Much simpler solution

– Does not break 802.3br (aka Ethernet preemption)

– Error propagation is not a concern

• Propose to adopt text changes as in slide #12 and following

