

Optional Cable Resistance Measurement (CRM) - Part 2

GITESH BHAGWAT, ANDY GARDNER, HEATH STEWART SANTA BARBARA DESIGN CENTER

Presentation Outline

- Reference for previous work: <u>stewart_0918_01b</u>
- Ensuring Stability Overview
- Margining Measured Cable Resistance
- Sample Calculations for Cable Resistance
- Compliance test steps for CRM
- Modify Clause 104.7
- Optional SCCP command for PSE read back

Ensuring Stability - Overview

- After measuring the cable resistance, PSE allocates power to PD
 - This is the maximum allowed power while maintaining stability
 - (See <u>stewart_0918_01b</u> for details of power allocation)
 - (See <u>darshan_3bu_1_0914</u> for details of stability)
- However, cable resistance can increase due to increase in environmental temperature
- Issue: A given constant power drawn by PD, P_{PD}, may cause instability at increased R_{cable}
 - Ambient temperature fluctuations may cause increases in R_{cable}
- Remedy: Margin the measured Cable resistance for a stated temperature rise

Margining Cable Resistance Measurement (CRM)

- Assumptions (Reference: <u>darshan_01_0118_Rev002</u>)
 - Max Temperature rise (T_{rise}) = 15°C
 - Copper Temperature Coefficient (α) = 0.00393 Ω /°C
- Cable Resistance Rise Coefficient:
 - $K_{CRR} = 1 + (\alpha \times T_{rise}) = 1.06$
- Measured Cable Resistance is then margined as
 - $R_{CABLE_MARGINED} = R_{CABLE_MEAS} \times K_{CRR}$
 - (See next slides for details)
- High Reliability Applications
 - Special applications, operating over a broader temperature range, can increase T_{rise} and K_{CRR} at their discretion

Modify Table 104.8 to include Cable Resistance Coefficient

Table 104-8 SCCP electrical requirements							
ltem	Parameter	Symbol	Unit	Min	Max	PSE/PD type	Additional Information
1	PSE Pull-up Voltage	V _{PUP}	V	Vgood_PSE_max	5	All	See Table 104-1
2	PSE Pull-up Current	I _{PUP}	mA	9	16	All	
3	Input Logic High Voltage	V _{TH}	v	3	-	All	
4	Input Logic Low Voltage	V _{TL}	v	-	1 2	All- A, B,C,D, Type E PD Type E PSE	
5	Sink Current	I _L	mA	30	-	All	V _{port} > 0.8V
22	Cable Resistance Coefficient	K _{CRR}	NA	1.06	-	Type E PSE	PSEs that support Cable resistance measurement

Sample Calculations for Cable Resistance Measurement (CRM)

Sample PSE compliance test for Cable Resistance Measurement (CRM)

- PD is connected using cable with less than maximum dc loop resistance
 - eg R_{CABLE_ACTUAL} = (R_{LOOP,MAX} / 2)
- PSE Performs CRM
 - PD requests maximum power based on PD class
 - P_{PD_REQ} = P_{class(min)}
 - PSE allocates P_{PSE_ALLOC}, P_{PD_ASSIGN} based on CRM
- PSE powers PD
 - PD draws P_{PD_ASSIGN}
 - Cable resistance is increased to $R_{\text{CABLE}_\text{ACTUAL}} \times K_{\text{CRR}}$
 - Power Output at PSE shall not exceed P_{class(min)}

Modify Clause 104.7

Implementation of SCCP by PSEs and PDs that present a valid detection signature is optional. PDs that present an invalid detection signature as specified in Table 104–6 shall implement SCCP. The PSE acts as a master during the SCCP exchange, controlling the PD that acts as the slave device. SCCP is a current-sinking, wired-OR (e.g., open-drain or open-collector), half-duplex bidirectional serial data bus. The PSE sources the required pull-up current. PDs can derive power from the PSE's pull-up current during classification via the PD PI.

Measurement of initial cable resistance, $R_{cable_initial}$, by PSEs and PDs that implement SCCP is optional. PSEs and PDs that implement cable resistance measurement shall support the VOLT_POWER_INFO and POWER_ASSIGN registers (Table 104.10, 104.11). PSEs that implement cable resistance measurement shall report assigned power through PSE Status Register 2 (See 45.2.7b.3).

A PSE that implements cable resistance measurement shall assign a PD Assigned Power which results in a PSE output power, in the XX state, of less than $P_{class(min)}$ when:

- PD input power consumption is equal to PD Assigned Power, and
- the cable resistance is increased to R_{autoclass} as defined in Equation 104-X

 $R_{autoclass} = Minimum (R_{loop(max)}, R_{cable_initial} \times K_{CRR})$

(Equation 104-X)

Optional SCCP command for PSE read back

- Add One SCCP Command:
 - 0x81 : POWER_ASSIGN_READBACK
- Allows the PSE to ensure that assigned power was successfully received by PD
- Replace Figure 104-13 with the figure shown on this slide

Thank You!

QUESTIONS? FEEDBACK?