Insertion Loss Limit Analysis

Eric DiBiaso (TE Connectivity),

May 30, 2018

Current Status of Insertion Loss Limit

- Motion to modify currently adopted IL limit failed for multiple reasons
 - PHY developers are not concerned about more margin at this time
 - 26 AWG (0.13mm²) cable is preferred for all applications up to 15m
 - Concerns with offset value in IL limit equation that is not dependent on frequency
- New Frequency Range should be
 - 5MHz to 3GHz
- Violations of the current IL limit still occur at lower frequencies

Cable Modeling Comparison (Diff. Pair)

Cable Parameters (26AWG / 105C) C1 = -2.92e-5 C2 = -9.8e-11Vp = 2.16e8 Cable Imp: 100 Ω mean 1.5 SD (Gaussian Dist.)

187 iterations with IL Violations

S21/S12 errors between 3.75 MHz & 911 MHz (Max error: 0.3dB)

***** http://www.ieee802.org/3/ch/public/mar18/mueller_3ch_01_0318.pdf

Cable Parameters (26AWG / 105C) C1 = -2.92e-5 C2 = -9.8e-11Vp = 2.16e8 Cable Imp: 100 Ω mean 1.5 SD (Gaussian Dist.)

23 iterations with IL Violations S21/S12 errors between 3.75 MHz & 7.5 MHz (Max error: 0.016dB)

Cable Parameters (26AWG / 105C) C1 = -2.92e-5

C1 = -2.32C-5 C2 = -9.8e-11 Vp = 2.16e8Cable Imp: 100 Ω mean 1.5 SD (Gaussian Dist.)

0 IL Violations

Conclusions

- New IL Limits were investigated using 26AWG (0.13mm^2) cables @ 105C
- Mueller IL Limit proposed in March meeting had 0 violations after 500 iterations
- Another IL Limit was also proposed which had 0 violations and removed the 0.5 offset term from the equation

Thank You!!!