Link Segment Configuration Proposal for Testing

Mike Gardner (Molex, LLC), Harsh Patel (Molex, LLC)

Supporters:

Natalie Wienckowski (GM/GM) Tzahi Madgar (Valens/Valens) Eric DiBiaso (TE Connectivity/TE Connectivity) Bert Bergner (TE Connectivity/TE Connectivity)

IEEE 802.3 Multi-Gig Automotive Ethernet PHY Task Force June 14, 2017 Ad hoc Meeting

A proposal for Link Segment Configuration

- Why the need for common configuration
- Link Segment Elements / Definition
- Proposed Testable Link Segment Configuration
- Segment considerations and configuration options

Why the need for a "Standard Link Segment Configuration"

- The following points suggest it useful to have a common Link Segment Configuration.
 - 1. Silicon Manufacturers are asking to have more short links biased to the near end of the silicon under test.
 - 2. Cable and Connector manufacturers have endless configuration requests coming from many different sources.
 - 3. Having a universal configuration provides consistent and fewer variables in the interpretation of the measured test data.
 - 4. A set of configurable link types will ease the request and manufacturing process to deliver when needed. "Testable Cable Link Set"

Link Segment Elements / Definition (Illustrations)

Proposed Testable Link Segment Configuration

"Testable Cable Link Set"

• All testable Link Segments must end with a Plug at each end.

- Producing the least combinations of cable types call for (1 meter x 4), (8 meter x 1) and (4 meter x 1).
- Using the 8 meter as a Plug to Plug provides that transition for both a 10 & 15 meter testable link.
- Testable Links combinations of: 8, 9, 10, 11, 12, 13, 14 and 15 meters are possible with varying In-Line connections ranging from '0' to '4' in number are possible.
- Adding one additional 1 meter Plug to Plug would enable additional Testable Link combinations of: 2, 3, 4, 5, 6, 7 meters.

Plug

1 meter

Plug

Proposed Testable Link Segment Configuration (X) Alternative

1 meter	1 meter	1 meter	8 meter	4 meter	1 meter	Total Segmen Length	t In-Lines
					Х	1	0
	Х				Х	2	1
	Х	Х			Х	3	2
X	Х	Х			Х	4	3
				Х	Х	5	1
		Х		Х	Х	6	2
	Х	Х		X	Х	7	3
(X)	(X)	(X)	Х	(X)	(X)	8	0 (4)
	Х		Х			9	1
	Х	Х	Х			10	2
X	Х	Х	Х			11	3
			Х	Х		12	1
		X	Х	X		13	2
	Х	X	Х	X		14	3
Х	X	X	Х	X		15	4

IEEE 802.3 Multi-Gig Automotive Ethernet PHY Task Force – June 14, 2017 Ad hoc Meeting

6

Thank You! Questions?

IEEE 802.3 Multi-Gig Automotive Ethernet PHY Task Force – June 14, 2017 Ad hoc Meeting