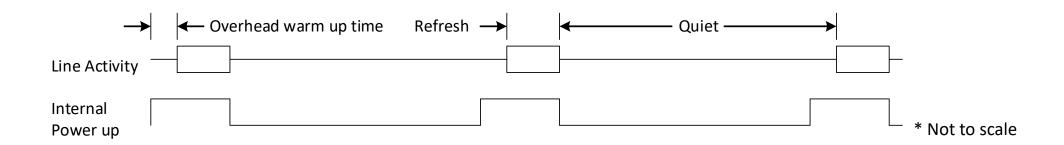
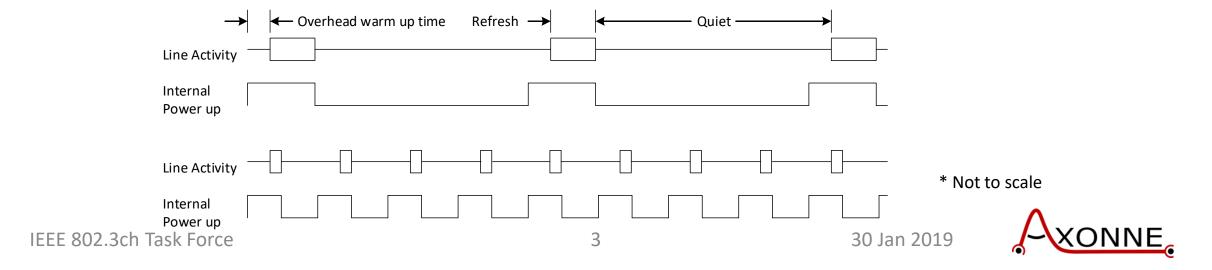
Asymmetric Operation Power and Modulation Considerations


William Lo

January 30, 2019

Background: Energy Efficient Ethernet


- Burst on/off Power savings during quiet period
- Theoretical power consumption is
 Trefresh / (Tquiet + Trefresh) x Normal power + power to detect alert/wake
 Trefresh / (Tquiet + Trefresh) about 1:100
- Actual power savings less due to ramp up and other overhead 1000BASE-T about 1:10, 10GBASE-T about 1:2

Higher baud rate effect on EEE

- Refresh keeps timing and signal process parameters from drifting
 - → Limits to how far apart refresh can be spaced
 - i.e. http://www.ieee802.org/3/ch/public/nov18/souvignier-3ch-01-1118.pdf slide 6
- Higher baud rate → refresh occurs closer together even though duty cycle remains the same
- Some warm up time does not scale with baud rate. i.e. analog circuits → Less power down time
- In some circuits cannot shut down at all because of fast turn on time required

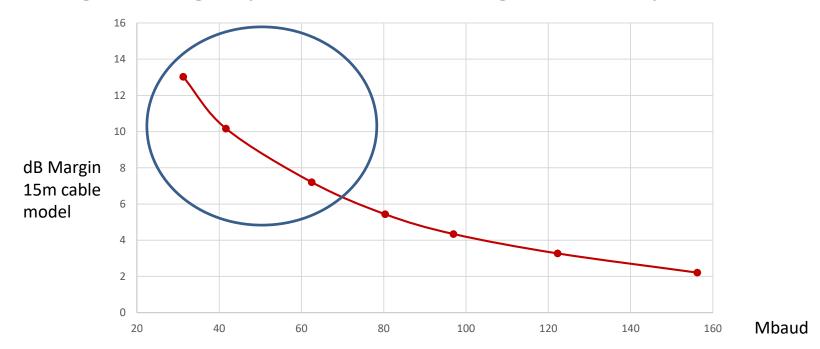
Methods to reduce power

- Reduce duty cycle (i.e. EEE bursting)
- Slow down clock frequency
- Simplify signal processing
- Reduce amplitude
- Others??

One possible approach

 Instead of controlling power via duty cycle we define a modulation that:

Run at lower baud rate (Slow down clock frequency)


Eliminate need for digital echo (Simplify signal processing)

5

Impact on high speed receiver by low speed transmitter

- High pass filter out low speed transmit signal (no digital echo)
- Look at margin at high speed receiver for given low speed baud rate

Recommendation: Modulation of low speed signal to below 70 Mbaud.

THANK YOU

