Multi-Gig PHYs Channel Code Proposal

Sujan Pandey NXP Semiconductors

July 11, 2018

Motivation

- Progress so far within IEEE802.3ch since May 2018
- 10GBASE-T1
 - 2 and 2.5bits/symbol are optimal from SNR point of view
- 2.5GBASE-T1
 - 1 to 2.5bits/symbol are optimal from SNR point of view
- Consensus within a group to choose RS as FEC for Multi-Gig
- Tu (<u>tu_3ch_01a_0718.pdf</u>) and Farjadrad (<u>farjarad_3chah_01b_061218.pdf</u>) suggest to use interleaving to reduce the FEC complexity
- Wu (<u>wu_3ch_01a_0518.pdf</u>) and McClellan (<u>McClellan_3ch_01a_0518.pdf</u>) suggest to use 1000BASE-T1 FEC

Criterion for Choosing RS FEC Parameters

- Reed-Solomon codes RS(N,K,T) with m-bits
 - N: # of symbols after channel code (N<2^m)
 - K: # of symbols before channel code
 - T: # of symbols that can be corrected among n
 - where, T=(N-K)/2
- In general RS decoder complexity increases
 - Exponetially with m (farjarad_3chah_01b_061218.pdf also sees this)
 - O(T²) as length of t increases
 - Multiplier, adder, inverse function, and registers
 - O(N) as length of N
- Complexity translates into
 - power
 - latency $\rightarrow O(T)$ and O(N)

10GBASE-T1 RS Code

- RS code options exploration from Tu (tu <u>3ch 01b 0518.pdf</u>)
 - Correction time (T) < 51ns can be done with RS bits (m) = 9 bits
 - While for correction time (T) > 51 needs at least m = 10 bits
- Interleaving is a good option to keep RS decoder simple
 - <u>farjarad_3chah_01b_061218.pdf</u> and <u>tu_3ch_01a_0718.pdf</u>
 - With a penalty of added latency
- Channel code overhead is ~12%
- 1 RS code for OAM bit

Required Burst Error Correction Length

- Sources
 - Transient Impulse (ISO 7637-3)
 - 50ns with period of 100µs
 - Narrow Band RF Interferences
 - DFE error propagation
- 2.5GBASE-T1
 - Needs FEC with burst error correction length of ~80ns
- 10GBASE-T1
 - Needs FEC with burst correction length of ~65ns

RS FEC Proposals for Multi-Gig PHYs

- Encoding
 - 256B/257B for all speeds
- 2.5GBASE-T1
 - PAM4: 8-bits RS code (217,194,11) with L = 1 or $2 \rightarrow 81.2$ ns (max)
 - Frame latency = 617ns
 - PAM3: 9-bits RS code (449, 409,24) with L = 1 \rightarrow 85.9ns (max)
 - Frame latency = 720ns
- 10GBASE-T1 → PAM4
 - 10-bits RS code (692,618,37) with L = 1 or $2 \rightarrow 66.2$ ns (max)
 - Frame latency = 615ns
- If needed interleaving level (L) can be higher than above

Conclusion

- Interleaving can be adopted for all speeds to make FEC less complex for power and area stand point
- But, need to understand the latency requirement to identify the interleaving levels
- There exists power and cost efficient FEC solution for 2.5GBASE-T1
 - Identifying FEC parameters from 10GBASE-T1 is very inefficient!
- 2.5GBASE-T1 RS code 8-bits (L = 1 or 2) and 9-bits (L = 1) meet the correction requirement
- 10GBASE-T1 RS code 10-bits (L = 2) meets the correction requirement

SECURE CONNECTIONS FOR A SMARTER WORLD