# High Speed Channel Modeling and Analysis – Part 2

Eric DiBiaso (TE Connectivity),

Bert Bergner (TE Connectivity), Chris Mandel (TE Connectivity)

May 24, 2018

## Motivation – Channel Modeling & Analysis

- Make improvements to existing simulations based on input from last meeting
- Evaluate new 95% and 5% topologies based on OEM input
- Investigate 24AWG cables for longer links (11m to 15m)
- Propose a new IL Limit

## Specific Topologies to Analyze

Topology Set 1 (95<sup>th</sup> Percentile)

- Implementation may contain 0,1, or 2 in-line connections
- Cable segments are 0.2m to 11.0m in total length
- May include sealed connectors



## Specific Topologies to Analyze

- Implementation contains 2 in-line connections
- Cable segments are 11m to 15m in total length
- May include sealed connectors



Topology Set 2

(Upper 5<sup>th</sup> Percentile)

# Channel Model



## Cable Modeling Parameters (Differential Pair)



### Cable Comparison – 24AWG vs 26AWG



**Cable A (11m)** 

C1 = -2.5898e-5 C2 = -6.7924e-11 Vp = 2.16e8

Cable B (11m) C1 = -1.97042e-5 C2 = -2.31881e-10 Vp = 2.16e8

Cable C (15m) C1 = -1.81334e-5 C2 = -1.32573e-10 Vp = 2.16e8

## Connector Modeling Parameters (Diff. Pair)



### Adopted RL Limits

Group 10G: Return Loss Limit Line (Adjusted with IL)



#### Cable Impedance – Gaussian Distribution



10,000 Iterations

(Max. 3 Segments, 11m)



#### Cable A Parameters

C1 = -2.50898e-5 C2 = -6.79241e-11 Vp = 2.16e8 Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

**2 RL Violations** S11/S22 > 5.2 GHz

#### Connector Tolerance Profile #1

(Max. 3 Segments, 11m)



**Cable A Parameters** 

C1 = -2.50898e-5 C2 = -6.79241e-11 Vp = 2.16e8 Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

**0** RL Violations

Connector Tolerance Profile #2

(Max. 3 Segments, 11m)



#### **Cable A Parameters**

C1 = -2.50898e-5 C2 = -6.79241e-11 Vp = 2.16e8 Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

#### **0** RL Violations

#### Connector Tolerance Profile #3



#### **Cable A Parameters**

C1 = -2.50898e-5 C2 = -6.79241e-11 Vp = 2.16e8 Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

#### **0 IL** Violations



(Max. 3 Segments, 11m)



**Cable B Parameters** 

C1 = -1.97042e-5C2 = -2.31881e-10Vp = 2.16e8Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

**1 RL Violations** S11/S22 > 5 GHz Greater than 20dB attenuation at 3GHz so black limit line violation

(Max. 3 Segments, 11m)



**Cable B Parameters** 

C1 = -1.97042e-5C2 = -2.31881e-10Vp = 2.16e8Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

**0** RL Violations

(Max. 3 Segments, 11m)



#### **Cable B Parameters**

C1 = -1.97042e-5C2 = -2.31881e-10Vp = 2.16e8Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

#### **0** RL Violations

(Max. 3 Segments, 11m)



#### **Cable B Parameters**

C1 = -1.97042e-5C2 = -2.31881e-10Vp = 2.16e8Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

#### **OIL** Violations

(3 Segments, 11m-15m)



(3 Segments, 11m-15m)



**Cable C Parameters (24AWG)** 

C1 = -1.81334e-5 C2 = -1.32573e-10 Vp = 2.16e8 Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

**0** RL Violations

Connector Tolerance Profile #2

(3 Segments, 11m-15m)



Topology Set 2

**Cable C Parameters (24AWG)** 

C1 = -1.81334e-5 C2 = -1.32573e-10 Vp = 2.16e8 Cable Imp:  $100\Omega$  mean 1.5 SD (Gaussian Dist.)

**O** RL Violations



Cable C Parameters (24AWG) C1 = -1.81334e-5 C2 = -1.32573e-10 Vp = 2.16e8Cable Imp: 100 $\Omega$  mean 1.5 SD (Gaussian Dist.)

**0 IL** Violations



### How much additional Insertion Loss for 105°C?



| Frequency<br>[MHz] | Mueller<br>Temp.<br>Difference |  |
|--------------------|--------------------------------|--|
| 100                | 0.65                           |  |
| 200                | 0.85                           |  |
| 500                | 2.5                            |  |
| 1000               | 2.5                            |  |
| 1500               | 3.15                           |  |
| 2000               | 3.75                           |  |
| 2500               | 4.1                            |  |
| 3000               | 4.6                            |  |
| 3500               | 5                              |  |
| 4000               | 5.45                           |  |
| 4500               | 5.9                            |  |
| 5000               | 6.3                            |  |
| 5500               | 7.2                            |  |

(recommend to add 0.5dB)

#### Insertion Loss Limit – Temperature Compensation



| Frequency<br>[MHz] | Mueller<br>Temp.<br>Difference | New Limit<br>Temp.<br>Difference |
|--------------------|--------------------------------|----------------------------------|
| 100                | 0.65                           | 0.77                             |
| 200                | 0.85                           | 1.10                             |
| 500                | 2.5                            | 1.78                             |
| 1000               | 2.5                            | 2.57                             |
| 1500               | 3.15                           | 3.20                             |
| 2000               | 3.75                           | 3.75                             |
| 2500               | 4.1                            | 4.25                             |
| 3000               | 4.6                            | 4.71                             |
| 3500               | 5                              | 5.14                             |
| 4000               | 5.45                           | 5.54                             |
| 4500               | 5.9                            | 5.93                             |
| 5000               | 6.3                            | 6.30                             |
| 5500               | 7.2                            | 6.66                             |

### Insertion Loss Limits



## Conclusions

- Both 95% and 5% Topologies were investigated
  - 26AWG was used for 95% use cases (Topology #1)
  - 24AWG was used for 5% use cases (Topology #2)
- 3 Different connector tolerance profiles were simulated
  - Profile #1 exhibited RL violations at upper frequencies
  - Profiles #2 & #3 had 0 RL violations for both topologies
- Gaussian Distribution was used for generating the cable segment impedance
  - Eliminated the RL violations at low frequencies previously seen with a uniform distribution
- New IL Limit is proposed based on these simulations

### Motion #

• Move to adopt a new Insertion Loss Limit given by the equation:

$$IL_{dB}(f) \le 0.0031 * f + 0.30 * \sqrt{f} + 1.5$$

as shown by the "gray curve" on page 25 of DiBiaso\_3ch\_01\_0518.pfd for all 3 speeds for frequencies from 5MHz to 5.5GHz.

- M: Eric DiBiaso
- S:
- (Technical >= 75%)
- Y: N: A:
- Motion Passes/Fails

# Thank You!!!