High Speed Channel Modeling and Analysis - Part 2

Eric DiBiaso (TE Connectivity),
Bert Bergner (TE Connectivity), Chris Mandel (TE Connectivity)

May 24, 2018

Motivation - Channel Modeling \& Analysis

- Make improvements to existing simulations based on input from last meeting
- Evaluate new 95\% and 5\% topologies based on OEM input
- Investigate 24AWG cables for longer links (11m to 15 m)
- Propose a new IL Limit

Specific Topologies to Analyze

- Implementation may contain 0,1 , or 2 in-line connections
- Cable segments are 0.2 m to 11.0 m in total length
- May include sealed connectors

Specific Topologies to Analyze

- Implementation contains 2 in-line connections
- Cable segments are 11 m to 15 m in total length
- May include sealed connectors

Shielded balanced pair

* wienckowski_3ch_01_032118

Channel Model

Cable Modeling Parameters (Differential Pair)

10m Cable Only Insertion Loss (Sdd21)

Cable A
C1 = -2.5898e-5
C2 $=-6.7924 \mathrm{e}-11$
$V p=2.16 e 8$

Cable B
C1 $=-1.97042 \mathrm{e}-5$
$C 2=-2.31881 e-10$
$\mathrm{Vp}=2.16 \mathrm{e} 8$

Both cables
are 26AWG,
but vary in
construction

Cable Comparison - 24AWG vs 26AWG

Cable A (11m)
C1 $=-2.5898 e-5$
$C 2=-6.7924 e-11$
$\mathrm{Vp}=2.16 \mathrm{e} 8$

Cable B (11m)
C1 $=-1.97042 e-5$
C2 $=-2.31881 e-10$
$\mathrm{Vp}=2.16 \mathrm{e} 8$

Cable C (15m)
C1 $=-1.81334 e-5$
$C 2=-1.32573 e-10$
$V p=2.16 e 8$

Connector Modeling Parameters (Diff. Pair)

Adopted RL Limits

Group 10G: Return Loss Limit Line (Adjusted with IL)

Cable Impedance - Gaussian Distribution

Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable A Parameters
C1 $=-2.50898 \mathrm{e}-5$
$C 2=-6.79241 e-11$
$V p=2.16 e 8$
Cable Imp: 100Ω mean 1.5 SD (Gaussian Dist.)

2 RL Violations
S11/S22 > 5.2 GHz

Connector Tolerance Profile \#1

Topology Set 1

Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable A Parameters
C1 $=-2.50898 \mathrm{e}-5$
C2 $=-6.79241 e-11$
$\mathrm{Vp}=2.16 \mathrm{e} 8$
Cable Imp: 100Ω mean 1.5 SD (Gaussian Dist.)

0 RL Violations

Connector Tolerance

 Profile \#2
Topology Set 1

Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable A Parameters
C1 $=-2.50898 \mathrm{e}-5$
C2 $=-6.79241 e-11$
$\mathrm{Vp}=2.16 \mathrm{e} 8$
Cable Imp: 100Ω mean 1.5 SD (Gaussian Dist.)

0 RL Violations

Connector Tolerance

 Profile \#3Topology Set 1

Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable A Parameters
C1 $=-2.50898 \mathrm{e}-5$
C2 $=-6.79241 e-11$
$\mathrm{Vp}=2.16 \mathrm{e} 8$
Cable Imp: 100Ω mean 1.5 SD
(Gaussian Dist.)

0 IL Violations

Connector Tolerance

 Profile \#1
Topology Set 1

Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable B Parameters
C1 $=-1.97042 \mathrm{e}-5$
$C 2=-2.31881 e-10$
$V p=2.16 e 8$
Cable Imp: 100Ω mean 1.5 SD
(Gaussian Dist.)

1 RL Violations
S11/S22 > 5 GHz
Greater than 20 dB attenuation at 3 GHz so black limit line violation

Connector Tolerance

 Profile \#1
Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable B Parameters
C1 $=-1.97042 \mathrm{e}-5$
$C 2=-2.31881 e-10$
$\mathrm{Vp}=2.16 \mathrm{e} 8$
Cable Imp: 100Ω mean 1.5 SD (Gaussian Dist.)

0 RL Violations

Connector Tolerance Profile \#2

Topology Set 1

Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable B Parameters
C1 $=-1.97042 \mathrm{e}-5$
$C 2=-2.31881 e-10$
$\mathrm{Vp}=2.16 \mathrm{e} 8$
Cable Imp: 100Ω mean 1.5 SD (Gaussian Dist.)

0 RL Violations

Connector Tolerance Profile \#3

Topology Set 1

Topology Set 1 - Random - 500 iterations

(Max. 3 Segments, 11m)

Cable B Parameters
C1 $=-1.97042 \mathrm{e}-5$
C2 $=-2.31881 \mathrm{e}-10$
$V p=2.16 e 8$
Cable Imp: 100Ω mean 1.5 SD
(Gaussian Dist.)

0 IL Violations

Connector Tolerance

 Profile \#1
Topology Set 1

Topology Set 2 - Random - 500 iterations

(3 Segments, $11 \mathrm{~m}-15 \mathrm{~m}$)

Topology Set 2

Topology Set 2 - Random - 500 iterations

(3 Segments, $11 \mathrm{~m}-15 \mathrm{~m}$)

Cable C Parameters (24AWG)
C1 $=-1.81334 e-5$
$C 2=-1.32573 e-10$
$\mathrm{Vp}=2.16 \mathrm{e} 8$
Cable Imp: 100Ω mean 1.5 SD (Gaussian Dist.)

0 RL Violations

Connector Tolerance

 Profile \#2
Topology Set 2

Topology Set 2 - Random - 500 iterations

(3 Segments, $11 \mathrm{~m}-15 \mathrm{~m}$)

Cable C Parameters (24AWG)
C1 $=-1.81334 e-5$
$C 2=-1.32573 e-10$
$V p=2.16 e 8$
Cable Imp: 100Ω mean 1.5 SD
(Gaussian Dist.)
0 RL Violations

Connector Tolerance

 Profile \#3
Topology Set 2 - Random - 500 iterations

(3 Segments, 11m-15m)

Cable C Parameters (24AWG)
C1 $=-1.81334 e-5$
C2 $=-1.32573 e-10$
$\mathrm{Vp}=2.16 \mathrm{e} 8$
Cable Imp: 100Ω mean 1.5 SD
(Gaussian Dist.)

0 IL Violations

Connector Tolerance Profile \#1

Topology Set 2

How much additional Insertion Loss for $105^{\circ} \mathrm{C}$?

Frequency $[\mathrm{MHz}]$	Mueller Temp. Difference
100	0.65
200	0.85
500	2.5
1000	2.5
1500	3.15
2000	3.75
2500	4.1
3000	4.6
3500	5
4000	5.45
4500	5.9
5000	6.3
5500	7.2

olations at low Frequencies

* mueller_3ch_01_0318.pdf (recommend to add 0.5 dB)

Insertion Loss Limit - Temperature Compensation

Frequency $[\mathrm{MHz}]$	Mueller Temp. Difference	New Limit Temp. Difference
100	0.65	0.77
200	0.85	1.10
500	2.5	1.78
1000	2.5	2.57
1500	3.15	3.20
2000	3.75	3.75
2500	4.1	4.25
3000	4.6	4.71
3500	5	5.14
4000	5.45	5.54
4500	5.9	5.93
5000	6.3	6.30
5500	7.2	6.66

Insertion Loss Limits

Conclusions

- Both 95% and 5% Topologies were investigated
- 26AWG was used for 95% use cases (Topology \#1)
- 24AWG was used for 5\% use cases (Topology \#2)
- 3 Different connector tolerance profiles were simulated
- Profile \#1 exhibited RL violations at upper frequencies
- Profiles \#2 \& \#3 had 0 RL violations for both topologies
- Gaussian Distribution was used for generating the cable segment impedance
- Eliminated the RL violations at low frequencies previously seen with a uniform distribution
- New IL Limit is proposed based on these simulations

Motion \#

- Move to adopt a new Insertion Loss Limit given by the equation:

$$
I L_{d B}(f) \leq 0.0031 * f+0.30 * \sqrt{ } f+1.5
$$

as shown by the "gray curve" on page 25 of DiBiaso_3ch_01_0518.pfd for all 3 speeds for frequencies from 5 MHz to 5.5 GHz .

- M : Eric DiBiaso
- S:
- (Technical >= 75\%)
- Y : $\mathrm{N}: \mathrm{A}$:
- Motion Passes/Fails

Thank You!!!

