

Power/Area Tradeoffs in Multi-Gig BASE-T1 PHYs

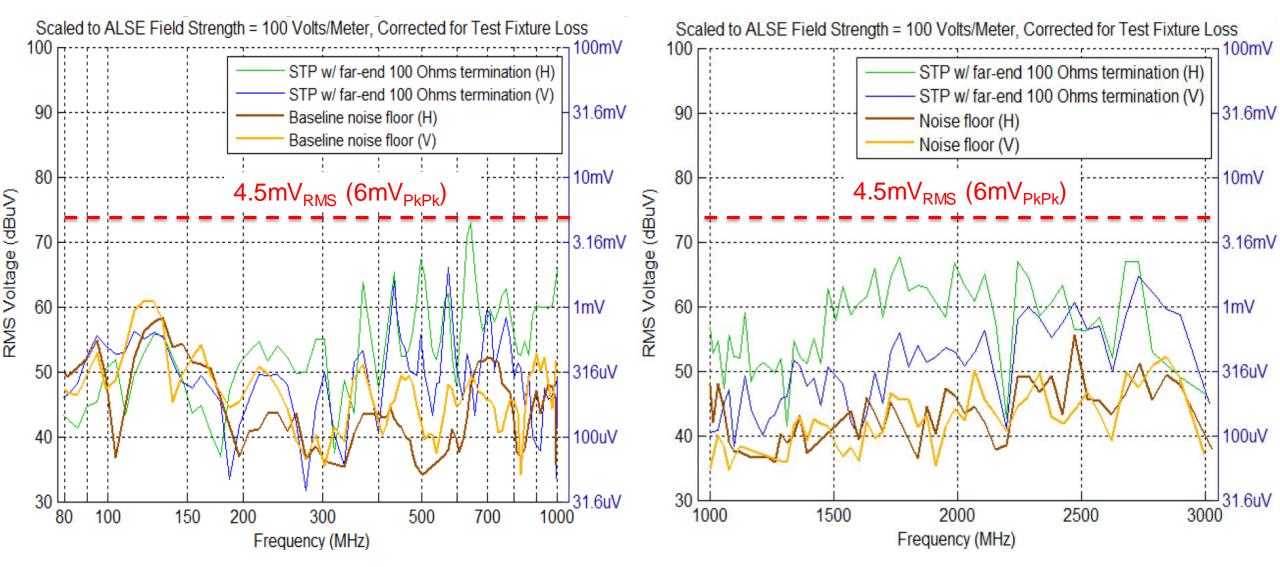
Ramin Farjadrad, George Zimmerman

Decision Factors for Selection of Modulation Schemes

- The top factor in modulation selection is the target performance feasibility
 - Do the selected modulations deliver the target performance (Data rate & BER) over the target medium?
- Among the feasible modulations choices, the next decision factor is to determine the choice with minimum PHY cost. The main PHY cost factors are:
 - Power
 - Area

Salz SNR Margins over 802.3 d0.2.1 Limit Line: 2.5G/5G/10Gbps

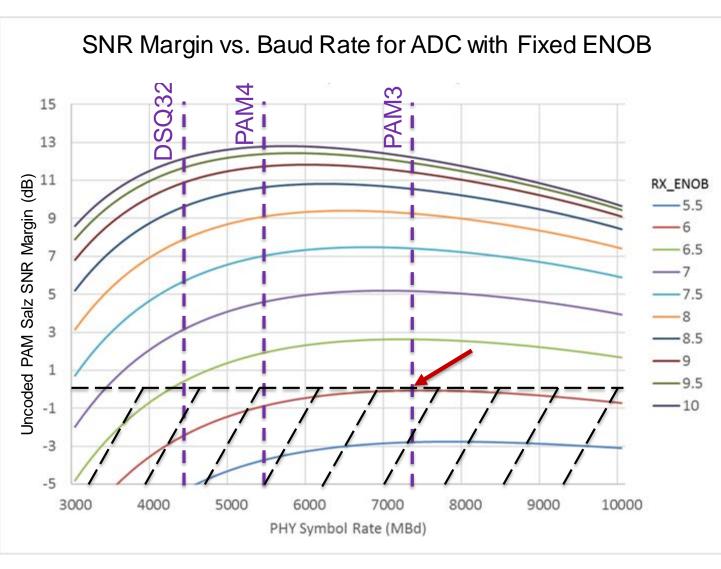
2.5Gbps	PAM2	PAM3	PAM4	PAM8
Baud rate (10% FEC Overhead) [GBaud]	2.75	1.74	1.38	0.92
Nyquist BW (FEC Overhead) [GHz]	1.38	0.91	0.69	0.46
10% Excess BW [GHz]	1.52	1.01	0.76	0.51
IL @Nyquist [dB]	19.00	14.41	12.58	9.96
Ideal PHY Salz SNR margin [dB]	31.49	28.82	26.62	20.46


5.0Gbps	PAM2	PAM3	PAM4	PAM8
Baud rate (10% FEC Overhead) [GBaud]	5.50	3.47	2.75	1.83
Nyquist BW (FEC Overhead) [GHz]	2.75	1.83	1.38	0.92
10% Excess BW [GHz]	3.02	2.01	1.52	1.01
IL @Nyquist [dB]	29.23	22.64	19.00	14.89
Ideal PHY Salz SNR margin [dB]	21.80	21.02	20.23	16.22

10Gbps	PAM2	PAM3	PAM4	DSQ32	PAM8
Baud rate (10% FEC Overhead) [GBaud]	11.0	7.33	5.50	4.40	3.67
Nyquist BW (FEC Overhead) [GHz]	5.50	3.67	2.75	2.2	1.83
10% Excess BW [GHz]	6.04	4.04	3.02	2.42	2.01
IL @Nyquist [dB]	46.16	35.24	29.23	25.36	22.64
Ideal PHY Salz SNR margin [dB]	14.42	14.68	12.62	10.95	9.97

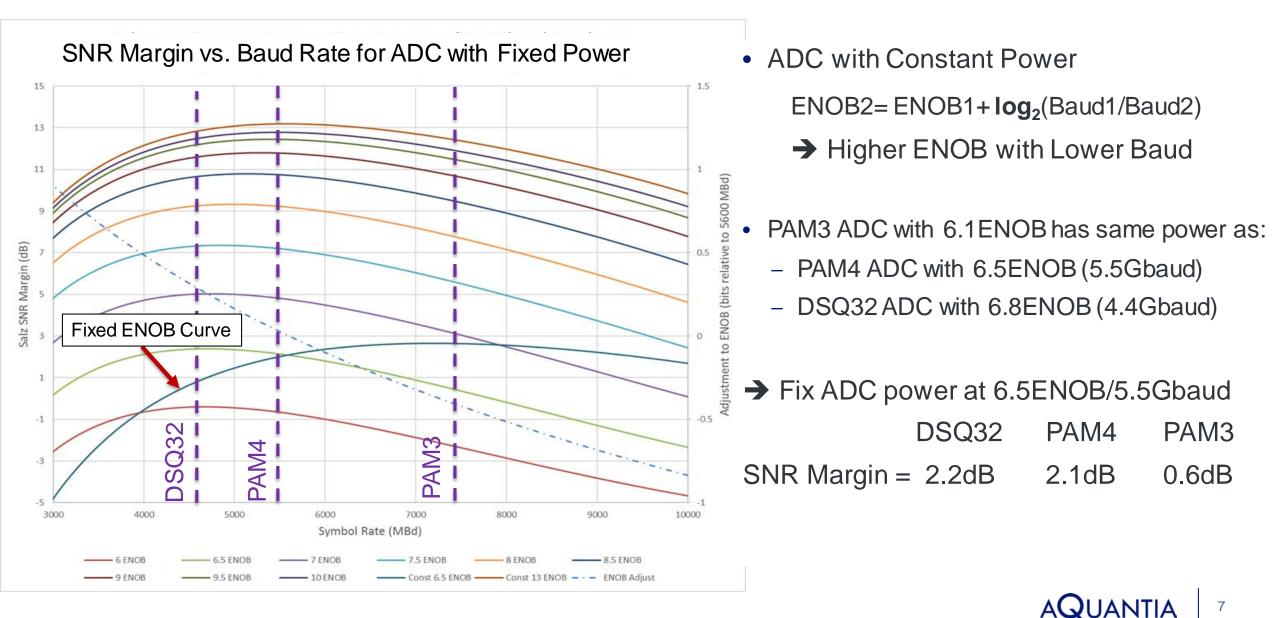
- Ideal PHY Salz SNR Assumptions:
 - PHY AFE with AWGN = -150dBm/Hz & Ideal ADC
 - Tx Amplitude= 1.0Vpp (differential)
 - FEC coding gain fully used to cover SNR degradation of
 - Finite DSP Filters Length/Resolutions
 - RF Interferences
- 2.5G/5Gbps → Large SNR margins across all modulations
- 10Gbps → Evaluate Performance vs. Power/Area Tradeoff

RFI Assumption Based on ALSE Measurements on STP/H-MTD


AQUANTIA 4

PHY Analog Power/Area Tradeoff versus Modulations/Baud

- Analog Front-End (AFE)
 - Analog circuitry introduce device noise generally in form of AWGN
 - At fixed power, AFE AWGN PSD (dBm/Hz) is fixed
 - → Noise power increases with higher Baud/BW
 - Higher Baud (lower PAM) leads to more high-frequency insertion loss
 - → More high-freq noise amplification after high-pass analog equalization
 - ADC power increases with its ENOB (effective number of bits) and Baud
 - ADC Power = K. Baud. $2^{ENOB} \rightarrow Baud2/Baud1 = 2^{(ENOB1-ENOB2)}$


10Gbps Performance Feasibility

- Simulation assumption:
 - Data rate + Coding overhead=~11Gbps
 - Higher PAM \rightarrow Lower Baud
 - 15m Cable with 802.3ch d0.1 IL & RL
 - 15dB echo reduction before receive ADC
 - AWGN at receiver input -150dBm/Hz
 - FEC gain fully used by SNR degradation of
 - Finite DSP Filters Length/Resolutions
 - RF Interferences
- Minimum ADC performance to provide positive SNR margin → ~6.1ENOB
 - An ADC with fixed 6.1ENOB leads to PAM3 having highest (non-zero) SNR margin

Effect of ADC Power vs. ENOB on 10Gbps SNR Margin

PHY Digital Power/Area Tradeoff versus Modulations/Baud

- DSP Cancellation Filters (ISI, Echo, etc)
 - Higher Baud (lower PAM) leads to higher clocking frequency for FIR filters
 - Power per FIR tap increases at least proportional to Baud (clock frequency) \rightarrow P=C.V².f
 - Higher clock rate usually needs larger logic gates, leading to large capacitances
 - Higher Baud (lower PAM) leads to more FIR taps over the same channel
 - Higher Baud \rightarrow Higher signal BW \rightarrow Higher distortion/interference (ISI/Echo) to cancel
 - Higher Baud \rightarrow Shorter symbols \rightarrow Proportionally more taps to cover same channel length

PHY Power/Area Tradeoff versus Modulations/Baud

- Higher PAM leads to higher bits/Sym resolution (e.g. DFE & Echo)
 - Each symbol in PAM3 or PAM4 are represented by 2bits^{*}
 - Each one of two symbols in DSQ32 is represented by 3bits
- → PHY DSP Estimates: ($\alpha \& \beta$ are constants)
 - Power = α x Baud² x Bits/Symbol
 - Area = β x Baud x Bits/Symbol
- PAM3 vs. PAM4

```
Power(PAM3)= 1.78 x Power(PAM4)
Area(PAM3) = 1.33 x Area(PAM4)
```

– PAM4 vs. DSQ32

Power(PAM4)= 1.04 x Power(DSQ32) Area(PAM4) = 0.8 x Area(DSQ32) Power AdvantageArea AdvantagePAM4PAM4

Power Advantage None

Area Advantage PAM4

* PAM3 & PAM4 benefit from implementation simplification by eliminating full multiplicatiers | AQUAN

FIR Implementation Complexity at Different PAM Levels

- FIR implementation can be significantly simplified if multipliers are replaced by simple shift functions.
- PAM2 to PAM5 benefit from this simplification, while PAM6 and beyond do not /PAM2: [+/-1]

/PAM3: [0, +/-1]

✓PAM4: $[+/-1, +/-3] \xrightarrow{+1} [0, +/-2, +4]$ (DC offset of +1 added to FIR input and the output is DC adjusted)

✓PAM5: [0, +/-1, +/-2]

× PAM6: $[+/-1, +/-3, +/-5] \xrightarrow{+1} [0, +/-2, +/-4, +6]$ (All but +6 is not a power of 2) × PAM8: $[+/-1, +/-3, +/-5, +/-7] \xrightarrow{+1} [0, +/-2, +/-4, +/-6, +8]$ (All but +6 is not a power of 2)

 Modulations such as PAM6, PAM8, DSQ32(2xPAM8), Cross32(2xPAM6), PAM16 end up with relatively complex FIR implementations

Conclusion

- Power/Area of the PHY is the second most important factor in selection of proper modulation scheme.
- Factoring in a constant-power AFE in the SNR calculations (with a reasonable ADC ENOB & AFE AWGN) shows DSQ32 & PAM4 offer the best SNR margins
- Factoring in DSP implementation complexity, PAM4 offers better area/power combination than those of DSQ32 and PAM3
- Next step is to evaluate the EMC immunity tolerance of each modulation choice.

