STP cable in automotive environment

Taketo Kumada
YAZAKI
2017.11.8•9
1. About in-vehicle influence

2. NGAUTO current situation

3. STP cable
 ◆ In-vehicle influence
 ◆ Degradation of the transmission characteristics
 ◆ Structure and transmission characteristics more than 1 GHz

4. Summary

STP : Shielded Twisted Pair
1. About in-vehicle influence

- **Vehicle environment**
 - High temp. atmos. 105 °C
 - Low temp. atmos. -40 °C
 - High humidity atmos.
 - Life time etc.

- **W/H assembling and vehicle installation**
 - Tensile
 - Bending
 - Wire band etc.

Vehicle environment, W/H assembling and vehicles installation affect to transmission characteristics
2. NGAUTO current situation

- Initial data of components such as connector and cable are used.

- Link segment configuration

- PHY makers run simulation to decide what modulation should be used?

PAM-8 or PAM-16
2. NGAUTO current situation

- Running simulation using the initial data of components

 Considering the in-vehicle influence below
 - Vehicle environment
 - W/H assembling and vehicle installation

- Investigated link segment may not work in automotive environment

 As the result of simulation, eye pattern doesn’t open

Figure 8: PAM-16 eye pattern image
3. STP cable

In-vehicle influence

Insertion loss

Graph 1: Insertion loss

<table>
<thead>
<tr>
<th>Test item</th>
<th>Test description</th>
<th>Tough level</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temp. atmos.</td>
<td>Measurement of transmission characteristic in 105 °C atmos.</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Low temp. atmos.</td>
<td>Measurement transmission characteristic in -40 °C atmos.</td>
<td></td>
</tr>
<tr>
<td>High temp. and high humidity atmos.</td>
<td>Measurement transmission characteristic in 85 °C, 85%</td>
<td></td>
</tr>
<tr>
<td>High temp. storage</td>
<td>Measurement transmission characteristic After 100°C, 3000 h aging</td>
<td>✔️</td>
</tr>
<tr>
<td>Tensile</td>
<td>Measure transmission characteristic with 100 N pulled</td>
<td></td>
</tr>
<tr>
<td>Bending</td>
<td>Measurement transmission characteristic with R = 5 times of wire diameter</td>
<td></td>
</tr>
<tr>
<td>Wire band</td>
<td>Measurement transmission characteristic with wire band</td>
<td></td>
</tr>
</tbody>
</table>

Tough levels:
- ✔️ Toughest
- ✔️ ✔️ Second Toughest
3. STP cable
◆ Degradation of transmission characteristics

STP cable is designed taking into consideration the degradation of transmission characteristics due to the influence of in-vehicle factors. The degradation of the transmission characteristics is assumed in the actual vehicles. Therefore, it is necessary to use cable data in consideration of the degradation in the simulation.

The degradation of the transmission characteristics is assumed in the actual vehicles. Therefore, it is necessary to use cable data in consideration of the degradation in the simulation.
3. STP cable
- Structure and transmission characteristics more than 1GHz

Cable structure

- Inner conductor (0.13sq)
- Insulation
- Outer conductor
- Sheath

Graph 3: Insertion loss

Graph 4: Return loss

- Suck-out can be shifted by cable structure
3. STP cable

◆ Structure and transmission characteristics more than 1GHz

The change rate of insertion loss increases according to frequency.

The maximum change rate is 24% (3.2 GHz).

Graph 5: Insertion loss

Change rate

\[
\text{Change rate} = \frac{(IL_{105 \, ^\circ C \text{ atmos.}} - IL_{\text{Initial value}})}{IL_{\text{Initial value}}}
\]
4. Summary

- With regard to the simulation for deciding the modulation method, it is necessary to consider degradation of the transmission characteristics of the cable due to the influence on the vehicle.

- The STP cable is designed with consideration of degradation of the transmission characteristics at the standard value of Ethernet 1 Gbps.

- The STP cable can secure bandwidth up to 3.2 GHz. Also it can shift bandwidth to high frequency band by cable structure.

- The change rate of insertion loss increase according to frequency. And the maximum change rate is 24% (3.2 GHz).
END
Thank you for your attention