Modifications for PoDL with NGAUTO

GITESH BHAGWAT
SANTA BARBARA DESIGN CENTER

Presentation Outline

- Suggest Baseline text changes to add Type F system for NGAUTO
- Clause 104 Modifications
- Clause 45 Modifications
- Other modifications
- Suggest MDI Return Loss Mask
- Previous references: bhagwat 3ch 02a 0718.pdf and bhagwat 3ch 01a 0918.pdf
- References in this meeting: DenBesten 3ch 01 1118.pdf

Modify 104.1.3 and 104.4.1

- Add the following text (in red) after the existing text:

104.1.3 PoDL system types

A PoDL system consists of a PSE, a link segment, and a PD. A Type A or Type C PSE and Type A or Type C PD is compatible with 100BASE-T1 PHYs. A Type B or Type C PSE and Type B or Type C PD is compatible with 1000BASE-T1 PHYs. A Type C PSE and Type C PD is compatible with both 100BASE-T1 and 1000BASE-T1 PHYs. Type D PSEs and Type D PDs may be incompatible with IEEE 802.3 PHYs and may lack a data entity. A Type F PSE and Type F PD is compatible with 2.5GBASET1, 5GBASE-T1 and 10GBASE-T1 PHYs.

104.4.1 PSE Types

For PoDL systems there are multiple types of PSEs-Type A, Type B, Type C, and Type D and Type F consistent with 104.1.3.

Modify Table 104-4

- 2.5GBASE-T1, 5GBASE-T1 and 10GBASE-T1 PSE requirements are kept same as 1000BASE-T1 systems
- Add the following text (in red) as shown below:

Table 104-4 PSE output requirements

Item	Parameter	Symbol	Unit	Min	Max	Class	PD Eype	Additional Information
\ldots
3	Output slew rate dV/dt		V / ms	-	22	All	A, C	...
				-	40	All	A, C	...
				-	200	All	B,F	...
...

Modify 104.4.6.3

- Add the following text (in red) after the existing text:

104.4.6.3 Power feeding ripple and transients

When measuring the ripple voltage for a Type A or Type C PSE as specified by Table 104-4 item (4a), $f 1=31.8 \mathrm{kHz} \pm 1 \%$. When measuring the ripple voltage for a Type B or Type F PSE as specified in Table 104-4 item (4a), $f 1=318 \mathrm{kHz} \pm 1 \%$.

When measuring the ripple voltages for a Type B or Type F PSE as specified by Table 104-4 item (4b), the voltage observed at the MDI/PI with the differential probe where $f 1=318 \mathrm{kHz} \pm 1 \%$ is postprocessed with transfer function $\mathrm{H} 2(f)$ specified in Equation (104-3) where $f 2=10 \mathrm{MHz} \pm 1 \%$.

Modify 104.5.1 and 104.6.2

- Add the following text (in red) after the existing text:

104.5.1 PD types

For PoDL systems there are four five types of PDs-Type A, Type B, Type C, and Type D and Type F consistent with

104.6.2 Fault tolerance

The PI for Type A, Type B, and-Type C and Type F PSEs and PDs shall meet the fault tolerance requirements as specified in 96.8.3.104.1.3.

Modify 104.5.6.4

- Add the following text (in red) after the existing text:

104.5.6.4 PD ripple and transients

The ripple and transient specifications for a Type A or Type C PD shall be met for all operating voltages in the range of VPD sourced through a dc bias coupling network with MDI return loss as specified by Equation (96-11a), and over the range of PPD. The ripple and transient specifications for a Type B or Type F PD shall be met for all operating voltages in the range of VPD sourced through a dc bias coupling network with MDI return loss as specified by Clause 97, and over the range of PPD.

A digital oscilloscope or data acquisition module with a differential probe is used to observe the voltage at the MDI/PI. The input impedance, $\mathrm{Zin}(f)$, and transfer function, $\mathrm{H} 1(f)$, of the differential probe are specified by Equation (104-1) and Equation (104-2), respectively. When measuring the ripple voltage for a Type A or Type C PD as specified by Table 104-7 item (3a), $f 1=31.8 \mathrm{kHz} \pm 1 \%$. When measuring the ripple voltage for a Type B or Type F PD as specified by Table 104-7 item (3a), f1 = $318 \mathrm{kHz} \pm 1 \%$.

When measuring the ripple voltages for a Type A or Type C PD as specified by Table 104-7 item (3b), the voltage observed at the MDI/PI with the differential probe where $f 1=31.8 \mathrm{kHz} \pm 1 \%$ shall be post-processed with transfer function $\mathrm{H} 2(f)$ specified in Equation (104-3) where $f 2=1 \mathrm{MHz} \pm$ 1%. When measuring the ripple voltages for a Type B or Type F PD as specified by Table 104-7 item (3b), the voltage observed at the MDI/PI with the differential probe where $f 1=318 \mathrm{kHz} \pm 1 \%$ shall be post-processed with transfer function $\mathrm{H} 2(f)$ specified in Equation (104-3) where $f 2=$ $10 \mathrm{MHz} \pm 1 \%$.

Modify Table 104-9

- Modify Table 104-9 as shown below:

Table 104-9- CLASS_TYPE_INFO Register Table

Bit(s)	$\begin{array}{\|l\|} \hline \text { Name } \\ \hline \text { Type } \end{array}$	Description					R/W
$\mathrm{b}[15: 12]$		15	14	13	12		RO
		1	1	1	0	= Type A	
		1	1	0	1	= Type B	
		1	0	1	1	= Type C	
		0	1	1	1	= Type D	
		0	0	1	1	= Type F	
...

Modify Table 45-211r

- Modify PoDL PSE Status 1 register bit definitions as shown below:

Table 45-211r-PoDL PSE Status 1 register bit definitions

Bit(s)	Name	Description			R/W
.	
13.2.2:0	PD Type	2	1	0	RO
		1	1	1 = Unknown	
		1	1	0 = Reserved	
				Reserved	
		1	0	*1 Type F PD	
		0	1	1 = Type D PD	
		0	1	0 = Type C PD	
		0	0	1 = Type B PD	
		0	0	0 = Type A PD	

Note: Ob100 is Type E (802.3cg)

Modify Table 45-211s

- Modify PoDL PSE Status 2 register bit definitions as shown below:

Table 45-211s-PoDL PSE Status 2 register bit definitions

Bit(s)	Name	Description			R/W
13.2.15	Invalid Class	1 = Invalid PD class detected $0=$ No invalid PD class detected			RO/LH
13.2.2:0		0			...
	PD Type				RO
		1	1	1 = Unknown	
		1	1	0 = Reserved	
				Reserved	
		1	0	*1 Type F PD	
		0	1	1 = Type D PD	
		0	1	$0=$ Type C PD	
		0	0	1 = Type B PD	
		0	0	0 = Type A PD	

Note: Ob100 is Type E (802.3cg)
ANALOG

Modify 45.2.7b.2.7

- Add the following text (in red) after the existing text:

45.2.7b.2.7 PSE Type (13.1.9:7)

Bits 13.1.9:7 report the PSE Type of the PSE as specified in 104.4.1. When read as 000, bits 13.1.9:7 indicate a Type A PSE, when read as 001 a Type B PSE is indicated, and when read as 010 a Type C PSE is indicated. and when read as 011 a Type D PSE is indicated, and when read as 101 a Type F PSE is indicated. Value of 110 is reserved.

Modify 45.2.7b.3.2

- Add the following text (in red) after the existing text:

45.2.7b.3.2 PD Type (13.2.2:0)

Bits 13.2.2:0 report a value of 111 until a valid classification has taken place, or if no PD is present. A value of 111 indicates that the PSE has not performed classification and therefore cannot indicate the proper value for the PD Type. Once a valid classification has occurred, the value of these bits reflect the PD Type of an attached PD as specified in 104.5.1. When read as 000, bits 13.2.2:0 indicate a Type A PD; when read as 001, a Type B PD is indicated; when read as 010, a Type C PD is indicated; and, when read as 011, a Type D PD is indicated, and when read as 101, a Type F PD is indicated. Values of $10 x$ and 110 are is reserved.

Modify 1.4.415

- Add the following text (in red) after the existing text:
1.4.418d Type D PoDL System: A PoDL PSE, link section, and PD that lack a data entity or are incompatible with IEEE 802.3 PHYs.
1.4.418f Type F PoDL System: A system comprising a PoDL PSE, link section, and PD that are compatible with 2.5GBASE-T1, 5GBASE-T1 and 10GBASE-T1 PHYs.

Modify 30.15.1.1.4 and 30.15.1.1.5

- Add the following text (in red) after the existing text:

typeA	Type A PoDL PSE
typeB	Type B PoDL PSE
typeC	Type C PoDL PSE
typeD	Type D PoDL PSE
typeF	Type F PoDL PSE

- Add the following text (in red) after the existing text:

typeA	Type A PoDL PD
typeB	Type B PoDL PD
typeC	Type C PoDL PD
typeD	Type D PoDL PD
typeF	Type F PoDL PD

MDI Return Loss

- References: bhagwat 3ch 02a 0718.pdf , bhagwat 3ch 01a 0918.pdf and DenBesten 3ch 01 1118.pdf
- 1000BASE-T1 MDI Return Loss shown for reference
- Low Frequency for NGAUTO extended to 1Mhz

Return Loss (dB)

Return Loss \geq

- $20-20 \times \log _{10}\left(\frac{10}{f}\right)$
- 20
- $12-10 \times \log _{10}\left(\frac{f}{3000}\right)$ for $500 \leq f \leq 3000$
- $12-20 \times \log _{10}\left(\frac{f}{3000}\right)$ for $3000 \leq f \leq 5500$ where f is frequency in MHz

$$
\text { for } 1 \leq f \leq 10
$$

for $\mathbf{1 0} \leq \boldsymbol{f} \leq \mathbf{5 0 0}$

AHEAD OF WHAT'S POSSIBLE ${ }^{\text {M }}$

Thank You!

QUESTIONS? FEEDBACK?

