

Modifications for PoDL with NGAUTO

GITESH BHAGWAT
SANTA BARBARA DESIGN CENTER

Presentation Outline

- Suggest Baseline text changes to add Type F system for NGAUTO
 - Clause 104 Modifications
 - Clause 45 Modifications
 - Other modifications
- Suggest MDI Return Loss Mask
 - Previous references: <u>bhagwat_3ch_02a_0718.pdf</u> and <u>bhagwat_3ch_01a_0918.pdf</u>
 - References in this meeting: <u>DenBesten_3ch_01_1118.pdf</u>

Modify 104.1.3 and 104.4.1

Add the following text (in red) after the existing text:

104.1.3 PoDL system types

A PoDL system consists of a PSE, a link segment, and a PD. A Type A or Type C PSE and Type A or Type C PD is compatible with 100BASE-T1 PHYs. A Type B or Type C PSE and Type B or Type C PD is compatible with 1000BASE-T1 PHYs. A Type C PSE and Type C PD is compatible with both 100BASE-T1 and 1000BASE-T1 PHYs. Type D PSEs and Type D PDs may be incompatible with IEEE 802.3 PHYs and may lack a data entity. A Type F PSE and Type F PD is compatible with 2.5GBASE-T1, 5GBASE-T1 and 10GBASE-T1 PHYs.

104.4.1 PSE Types

For PoDL systems there are multiple types of PSEs—Type A, Type B, Type C, and Type D and Type F consistent with 104.1.3.

Modify Table 104-4

- ► 2.5GBASE-T1, 5GBASE-T1 and 10GBASE-T1 PSE requirements are kept same as 1000BASE-T1 systems
- ► Add the following text (in red) as shown below:

	Table 104-4 PSE output requirements							
Item	Parameter	Symbol	Unit	Min	Max	Class	PD Eype	Additional Information
•••						•••		
3	Output slew rate dV/dt		V/ms	-	22	All	A,C	
				-	40	All	A,C	
				-	200	All	B,F	
•••		•••					•••	

Modify 104.4.6.3

► Add the following text (in red) after the existing text:

104.4.6.3 Power feeding ripple and transients

. . .

When measuring the ripple voltage for a Type A or Type C PSE as specified by Table 104–4 item (4a), $f1 = 31.8 \text{ kHz} \pm 1\%$. When measuring the ripple voltage for a Type B or Type F PSE as specified in Table 104–4 item (4a), $f1 = 318 \text{ kHz} \pm 1\%$.

. . .

When measuring the ripple voltages for a Type B or Type F PSE as specified by Table 104–4 item (4b), the voltage observed at the MDI/PI with the differential probe where $f1 = 318 \text{ kHz} \pm 1\%$ is post-processed with transfer function H2(f) specified in Equation (104–3) where $f2 = 10 \text{ MHz} \pm 1\%$.

Modify 104.5.1 and 104.6.2

Add the following text (in red) after the existing text:

104.5.1 PD types

For PoDL systems there are four five types of PDs—Type A, Type B, Type C, and Type D and Type F consistent with

104.6.2 Fault tolerance

The PI for Type A, Type B, and Type C and Type F PSEs and PDs shall meet the fault tolerance requirements as specified in 96.8.3.104.1.3.

Modify 104.5.6.4

Add the following text (in red) after the existing text:

104.5.6.4 PD ripple and transients

The ripple and transient specifications for a Type A or Type C PD shall be met for all operating voltages in the range of VPD sourced through a dc bias coupling network with MDI return loss as specified by Equation (96–11a), and over the range of PPD. The ripple and transient specifications for a Type B or Type F PD shall be met for all operating voltages in the range of VPD sourced through a dc bias coupling network with MDI return loss as specified by Clause 97, and over the range of PPD.

A digital oscilloscope or data acquisition module with a differential probe is used to observe the voltage at the MDI/PI. The input impedance, Zin(f), and transfer function, H1(f), of the differential probe are specified by Equation (104–1) and Equation (104–2), respectively. When measuring the ripple voltage for a Type A or Type C PD as specified by Table 104–7 item (3a), f1 = 31.8 kHz ± 1%. When measuring the ripple voltage for a Type F PD as specified by Table 104–7 item (3a), f1 = 318 kHz ± 1%.

When measuring the ripple voltages for a Type A or Type C PD as specified by Table 104–7 item (3b), the voltage observed at the MDI/PI with the differential probe where $f1 = 31.8 \text{ kHz} \pm 1\%$ shall be post-processed with transfer function H2(f) specified in Equation (104–3) where $f2 = 1 \text{ MHz} \pm 1\%$. When measuring the ripple voltages for a Type B or Type F PD as specified by Table 104–7 item (3b), the voltage observed at the MDI/PI with the differential probe where $f1 = 318 \text{ kHz} \pm 1\%$ shall be post-processed with transfer function H2(f) specified in Equation (104–3) where $f2 = 10 \text{ MHz} \pm 1\%$.

Modify Table 104-9

► Modify Table 104-9 as shown below:

		Table 104-9	9- CLASS_T	YPE_INFO	Register ⁻	Гable				
Bit(s)	Name	Description								R/W
b[15:12]	Туре	15	14	13	12		RO			
		1	1	1	0	= Type A				
		1	1	0	1	= Type B				
		1	0	1	1	= Type C				
		0	1	1	1	= Type D				
		0	0	1	1	= Type F				
										

Modify Table 45-211r

► Modify PoDL PSE Status 1 register bit definitions as shown below:

Bit(s)	Name	Description				R/W
13.2.2:0	PD Type	2	1	0		RO
		1	1	1	= Unknown	
		1	1	0	= Reserved	
					Reserved-	
		1	0	× 1	Type F PD	
		0	1	1	= Type D PD	
		0	1	0	= Type C PD	
		0	0	1	= Type B PD	
		0	0	0	= Type A PD	

Note: 0b100 is Type E (802.3cg)

Modify Table 45-211s

► Modify PoDL PSE Status 2 register bit definitions as shown below:

Bit(s)	Name	Description			R/W	
13.2.15	Invalid Class	1 = Invalid PD class detected 0 = No invalid PD class detected				
			-			
13.2.2:0	PD Type	2	1	0		RO
		1	1	1	= Unknown	
		1	1	0	= Reserved	
					Reserved	
		1	0	*1	Type F PD	
		0	1	1	= Type D PD	
		0	1	0	= Type C PD	
		0	0	1	= Type B PD	
		0	0	0	= Type A PD	

Note: 0b100 is Type E (802.3cg)

Modify 45.2.7b.2.7

Add the following text (in red) after the existing text:

45.2.7b.2.7 PSE Type (13.1.9:7)

Bits 13.1.9:7 report the PSE Type of the PSE as specified in 104.4.1. When read as 000, bits 13.1.9:7 indicate a Type A PSE, when read as 001 a Type B PSE is indicated, and when read as 010 a Type C PSE is indicated, and when read as 101 a Type F PSE is indicated. Value of 110 is reserved.

Modify 45.2.7b.3.2

Add the following text (in red) after the existing text:

45.2.7b.3.2 PD Type (13.2.2:0)

Bits 13.2.2:0 report a value of 111 until a valid classification has taken place, or if no PD is present. A value of 111 indicates that the PSE has not performed classification and therefore cannot indicate the proper value for the PD Type. Once a valid classification has occurred, the value of these bits reflect the PD Type of an attached PD as specified in 104.5.1. When read as 000, bits 13.2.2:0 indicate a Type A PD; when read as 001, a Type B PD is indicated; when read as 010, a Type C PD is indicated; and when read as 101, a Type F PD is indicated. Values of 10x and 110 are is reserved.

Modify 1.4.415

► Add the following text (in red) after the existing text:

. . .

1.4.418d Type D PoDL System: A PoDL PSE, link section, and PD that lack a data entity or are incompatible with IEEE 802.3 PHYs.

1.4.418f Type F PoDL System: A system comprising a PoDL PSE, link section, and PD that are compatible with 2.5GBASE-T1, 5GBASE-T1 and 10GBASE-T1 PHYs.

Modify 30.15.1.1.4 and 30.15.1.1.5

Add the following text (in red) after the existing text:

typeA	Type A PoDL PSE
typeB	Type B PoDL PSE
typeC	Type C PoDL PSE

typeD Type D PoDL PSE

typeF Type F PoDL PSE

► Add the following text (in red) after the existing text:

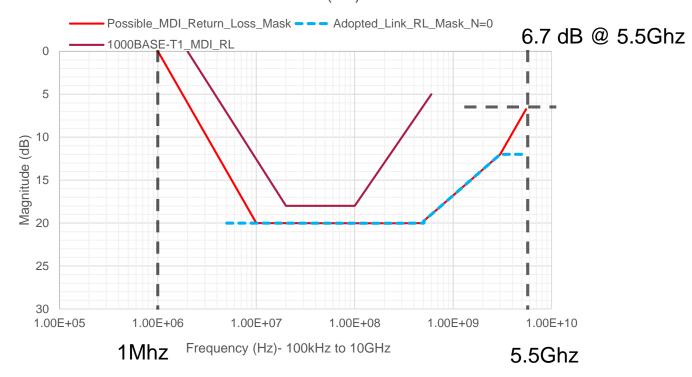
typeA	Type A PoDL PD
typeB	Type B PoDL PD
typeC	Type C PoDL PD
typeD	Type D PoDL PD
tvpeF	Type F PoDL PD

MDI Return Loss

- ► References: bhagwat 3ch 02a 0718.pdf, bhagwat 3ch 01a 0918.pdf and DenBesten 3ch 01 1118.pdf
- ► 1000BASE-T1 MDI Return Loss shown for reference
- ► Low Frequency for NGAUTO extended to 1Mhz

Return Loss ≥

•
$$20 - 20 \times Log_{10}(\frac{10}{f})$$
 for $1 \le f \le 10$


• 20 for
$$10 \le f \le 500$$

•
$$12 - 10 \times Log_{10}(\frac{f}{3000})$$
 for $500 \le f \le 3000$

■
$$12 - 20 \times Log_{10}(\frac{f}{3000})$$
 for $3000 \le f \le 5500$

where f is frequency in MHz

Return Loss (dB)

Thank You!

QUESTIONS? FEEDBACK?