

A Proposed ADC-DSP Receiver Reference Model for COM (Update)

Yuchun Lu, Huawei Pengchao Zhao, Huawei Weiyu Wang, Huawei Yan Zhuang, Huawei Liyang Sun, Huawei

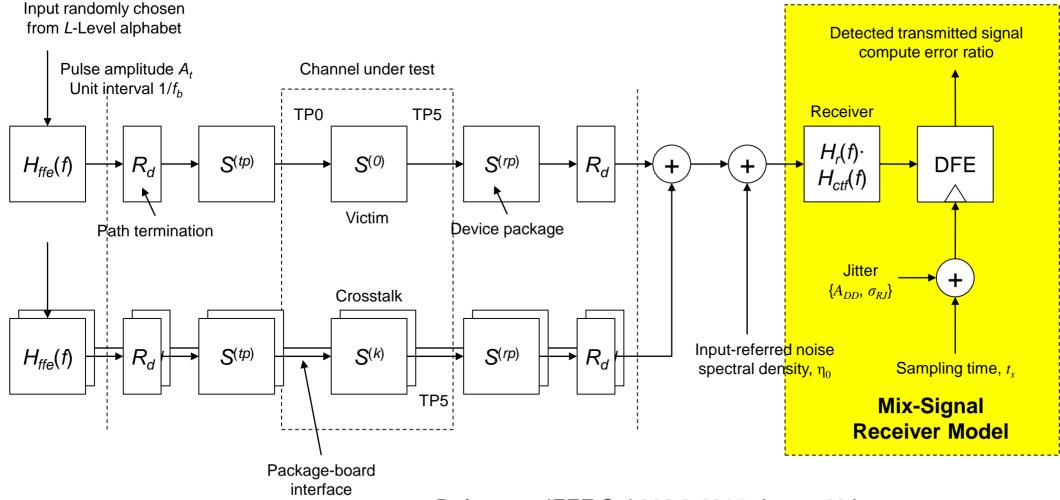
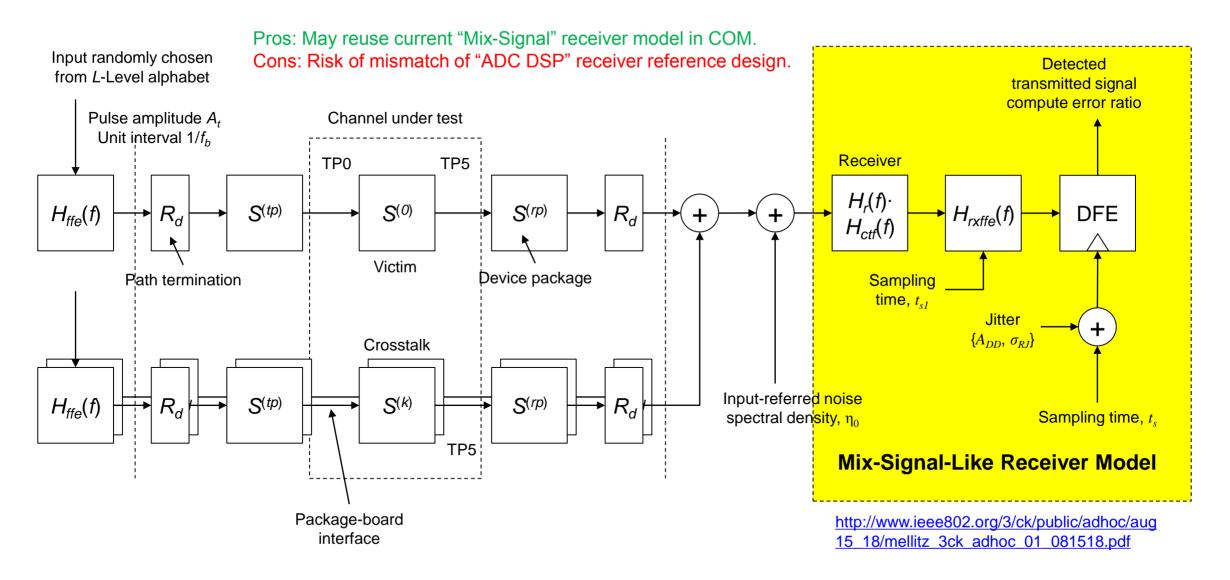

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Table of Contents

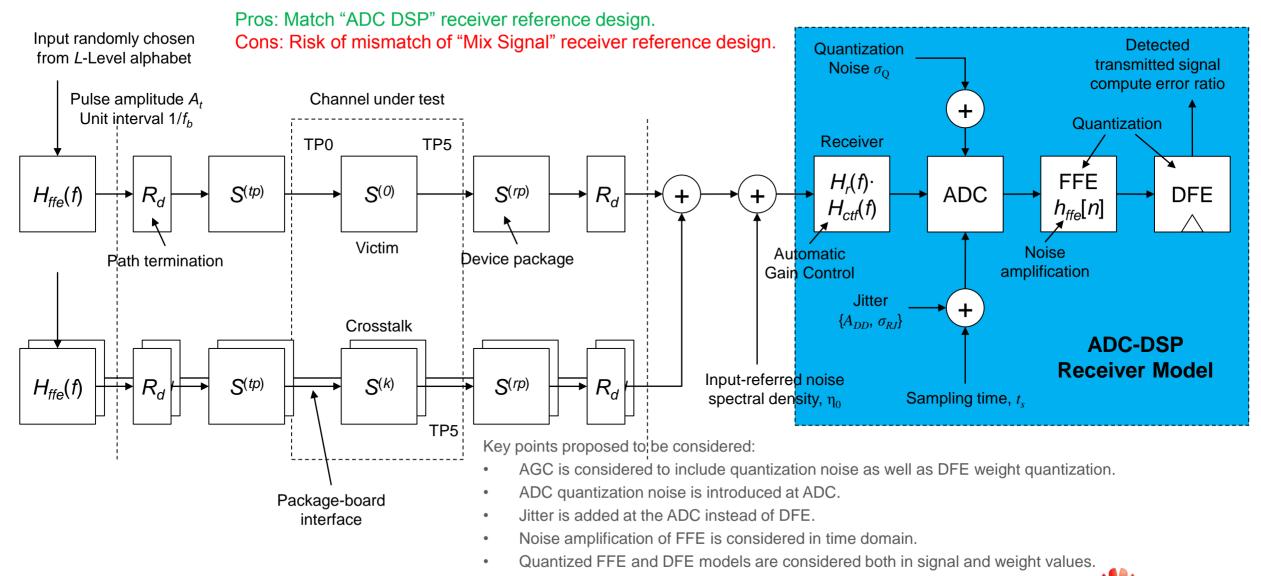
- Receiver Reference Models
 - Mix-Signal Receiver (Annex 93A, without RX FFE)
 - Mix-Signal-Like Receiver Model (under discussion in COM2.41)
 - The ADC-DSP Receiver Model (Proposed)
 - Comparison of "Mix-Signal-Like" Model and "ADC DSP" Model
 - "Parameters" and "Formulas" of the Proposed ADC-DSP Receiver Model
- Suggestions and Future Work
- Acknowledgement

What do we have now?-- Mix-Signal Receiver Model



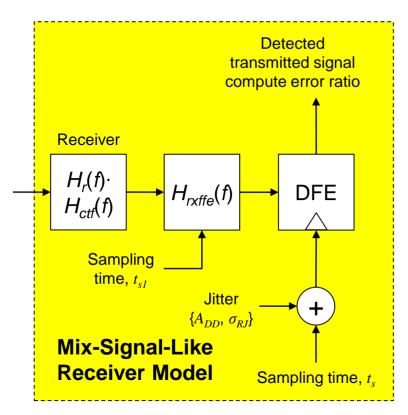
The model exactly match the reference design.

Reference: IEEE Std 802.3-2015, Annex 93A



Model under discussion: Mix-Signal-Like Receiver Model (COM2.41)

Proposed ADC-DSP Receiver Model

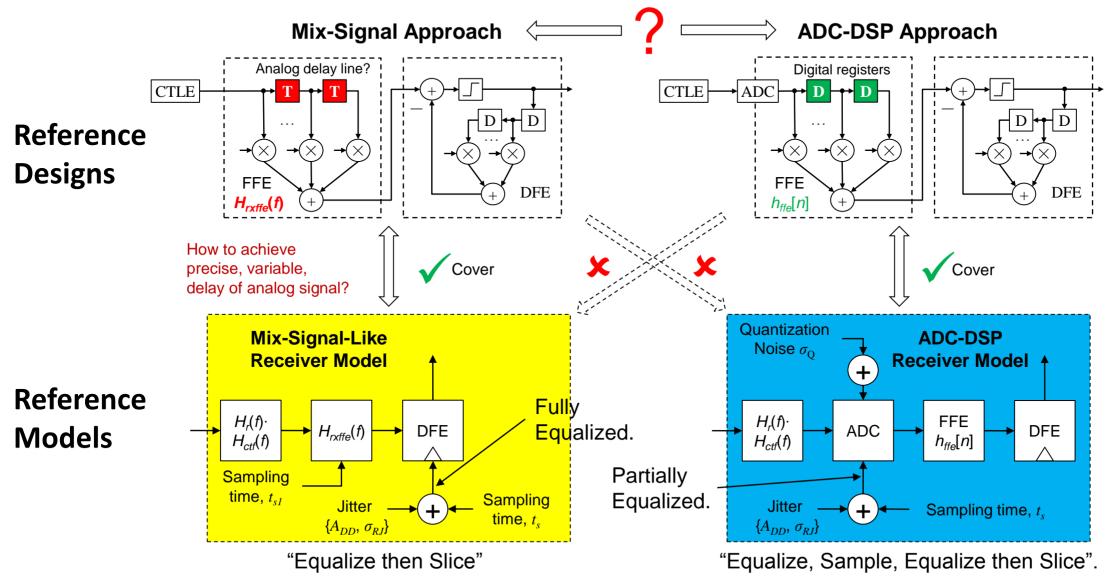


BUILDING A BETTER CONNECTED WORLD

5

HUAWE

Key points proposed to be considered



- ADC quantization noise is not considered.
- Automatic gain control is not explicitly considered.
- Quantization of FFE&DFE are considered in analog way.
- Jitter is added at DFE.
- RX FFE is modeled in continuous frequency domain.

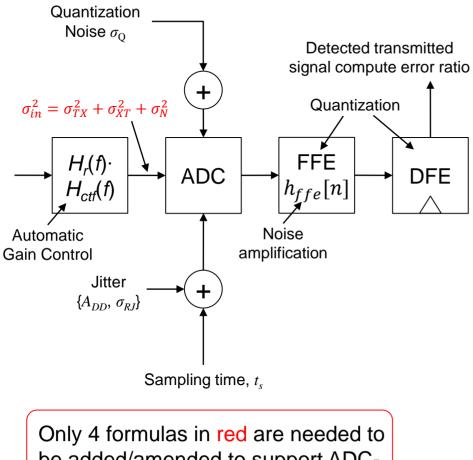
- ADC quantization noise is considered.
- Automatic gain control is considered.
- Quantization of FFE&DFE are considered in digital way.
- Jitter is added at ADC instead of DFE.
- RX FFE is modeled in discrete time domain.

The proposed ADC DSP receiver model is not implementation-oriented, but considers a minimum set of parameters.

Recommend Explicit Model: Symbols should have Specific Meanings

Parameters in Proposed ADC DSP Receiver Model

Parameter	Symbol	Units	Equivalent COM2.41 parameters	Values	Units	Mapping to ADC DSP model
ADC input amplitude	A _{adc}	mV	Not considered	N.A.	N.A.	Not defined in COM2.41
ADC resolution	N _{adc}	bit	Not Considered	N.A.	N.A.	Not defined in COM2.41
FFE weight bit number	$N_{ m ffe}$	bit	ffe_tap_step_size	0.01	Normalized to main tap=1	$N_{\rm ffe} = log2\left(rac{2}{0.01} ight) = 7.6$ bits $N_{\rm ffe} = 7$ means $rac{1}{64}$ step size.
DFE weight bit number	N _{dfe}	bit	N_b_step	0.0115	Normalized? Equivalent to AGC?	$N_{\rm dfe} = log2\left(\frac{2}{0.0115}\right) = 7.4$ bits?
FFE Post Tap Number*	$N_{\rm post_{ffe}}$		ffe_post_tap_len	32		Same
FFE Pre Tap Number	N _{pre_ffe}		ffe_pre_tap_len	3		Same
DFE Tap Number	N _b	UI	N _b	1	UI	Same
* The FFE Tap Number is changed to FFE Post Tap Number to align with COM 2.41.						


• No new "parameters" are introduced, except for A_{adc} and N_{adc} which are related to "ADC quantization noise".

- ADC quantization noise should be considered in ADC DSP receiver. It is too optimistic to ignore ADC quantization noises.
- "The famous 3dB minimum was allowance for implementation 'penalties' " not for modeling "penalties".
 - Modeling should be accurate. The "penalties" should be allocated to the variation of A_{adc}, N_{adc}, N_{ffe}, N_{dfe}, etc. for different ADC DSP receiver implementation.
- The FFE&DFE weight number $N_{\rm ffe}$ & $N_{\rm dfe}$ are equivalent to the "ffe_tap_step_size" and "N_b_step".
 - No difference in the difficulty of consensus building. But *N*_{ffe} & *N*_{dfe} are the natural language for ADC DSP receivers.
 - N_{ffe} & N_{dfe} make a lot of sense to ADC DSP receivers. They are directly mapped to the receiver architecture.
 - Even with "Mix-Signal-Like" model, It is hard to define "N_b_step" without defining automatic gain control (AGC).

٠

Formulas for ADC-DSP Reference Receiver Model

be added/amended to support ADC-DSP model, while all the others can be reused.

 $h_J(n) = \frac{h(t_s + (n+1/M)T_b) - h(t_s + (n-1/M)T_b)}{2/M}$ $\sigma_X^2 = \frac{L^2 - 1}{2(L-1)^2}$ $\sigma_{in}^2 = \sigma_{TX}^2 + \sigma_{XT}^2 + \sigma_N^2$, scaled by the AGC gain. $\sigma_{TX}^2 = \left[h^{(0)}(t_s)\right]^2 \cdot 10^{-SNR_{TX}/10}$ $\sigma_0^2 = \frac{1}{2} \left(\frac{A_{\text{adc}}}{2N_{\text{adc}} - 1} \right)^2 \qquad \Box$ $\sigma_{ISI}^2 = \sigma_X^2 \cdot \sum_i h_{ISI}^2(i),$ $\sigma_I^2 = \left(A_{DD}^2 + \sigma_{RI}^2\right) \cdot \sigma_X^2 \cdot \sum_n h_I^2(n)$ $[\sigma_m^k]^2 = \sigma_X^2 \sum_n [h^{(k)} ((m/M + n)T_h)]^2$ $\sigma_{XT}^2 = \sum_{k=1}^{K-1} \left[\sigma_i^k \right]^2$ $\alpha_{\rm FFE} = \sqrt{\sum_i h_{ffe} [i]^2}$ $\sigma_N^2 = \eta_0 \int_0^\infty \left| H_r(f) \cdot H_{ctf}(f) \right|^2 df$ $A_{ni}^2 = \alpha_{\text{FFF}}^2 \cdot \left(\sigma_{\text{in}}^2 + \sigma_0^2 + \sigma_l^2\right) + \sigma_{lSI}^2$ $FOM = 20 \cdot \log_{10} \left(\frac{A_s}{A_{mi}} \right)$

ADC resolution	5	6	7	8		
$\sigma_{ m Q}$ in mV @ $A_{ m adc}$ =200mV	3.72	1.83	0.91	0.45		
Upper bound of σ_N :						
$\sqrt{8.2 \times 10^{-9} \text{V}^2/\text{GHz} \times 56\text{GHz}} \times 10^3 =$						
0.6776mV						
Quantization noise cannot be neglected						

All the formulas in "black" are from Annex 93A.

A Comparison List of "Mix-Signal-Like" Model and "ADC DSP" Model

	Mix-Signal-Like Model (COM2.41)	ADC-DSP Model	
Applicable receiver architecture	Mix-Signal Receiver	ADC DSP Receiver	
ADC quantization	Not Considered	Considered	
Sampling phase and Jitter consideration	Sample & Add @ DFE Match Mix-Signal Receiver	Sample & Add @ ADC Match ADC-DSP Receiver	
Quantization of FFE&DFE Weight	Match the language of Mix-Signal Design ('step')	Match the language of DSP Design ('bit number')	
# of new parameters	5 (without considering ADC quantization noise)	7 (A_{adc} & N_{adc} are for ADC quantization noise)	
# of added/amended formulas	?	4	
Implementation Independent?	Yes	Yes	

Suggestions and Future Work

- What receiver types do we need? "Mix-Signal", "ADC-DSP" or both? Select the corresponding reference model for a specific architecture. Mix-up things will lead to confusion even though they may be close to each other in mathematics.
 - "Mix-Signal Model" for "Mix-Signal Receiver"
 - "ADC DSP Model" for "ADC DSP Receiver"
- For ADC-DSP Receiver model
 - ADC Quantization noise should be considered.
 - No "new" parameters are introduced, except for DSP language alignments.
 - The problem will be simplified because the "language" is aligned.
 - "number of bits" is common language for DSP designers.
 - "step" will lead to fractional bit number which is very confusing.
 - The workload of proposed ADC-DSP model is fair.
- Future Work
 - Recommend to do consensus building on the type of receivers.
 - Sensitive study of parameters extracted from the ADC-DSP Receiver Model.
 - Comparative study of "ADC-DSP Receiver Model" and "Monte-Carlo IBIS/AMI model"

Acknowledgement

• We appreciate people reviewed and commented on this model and are looking forward to working together with the group to improve the COM model.

JOIN US IN BUILDING A BETTER CONNECTED WORLD

THANK YOU