Possible tools for improving performance in electrical links

Adee Ran, Intel

Motivation

- In P802.3ck we are doubling the data rate and the signaling rate
- IL targets compared to previous generations:
 - For cable/backplane somewhat lower (28 dB vs. 30 dB)
 - For C2M likely higher (14? vs. 10 dB)

• C2C?

- However loss is not everything
 - UI length is halved signal integrity cares for smaller features
 - Reflections and crosstalk are harder to control
 - Even with very good equalization, the SNR denominator is a challenge
- We look at channels between test points, adding reference pacakges this is optimistic
 - Well matched terminations
 - No package crosstalk
- Real life implementations may not be as good

Past results from 802.3cd

- Yasuo Hidaka has shown in several presentations that mismatches between device and channel impedance can affect COM results
 - See hidaka_3cd_01a_0317, hidaka_3cd_01a_0517, hidaka_3cd_01_0717
 - In a few combinations of package and device impedances, degradations of up to ~1 dB, but also possible improvements of up to ~0.5 compared to nominal values
 - Hidaka suggested including a gap in COM between RITT calibrations and channel specs
 - To account for variations of devices connected to a channel
 - It was not adopted
- We also added ERL after considerable work by Rich Mellitz
 - Now devices have meaningful specs controlling their reflections!
 - ... but we also made COM better for "nominal" channels by using "nominal" terminations
 - As demonstrated in <u>dudek_3cd_01a_0718</u> there bad results are possible with devices that meet the Tx and ERL specifications, and cables that meet COM specifications
- We have a noise budget deficit...
 - It may be mitigated by statistics ("not all things are worst case at the same time")

Specs and practice

- The Ethernet standards had a nominal impedance of 100 Ohms for multiple generations
- Practical packages are designed with lower impedance
 - Nominal may be 85-90 Ohms
 - Various motivations
 - Deviations from the nominal may adversely impact RL, but that was seen as a secondary concern
- Operation of these packages may be better with matched channel impedance (e.g. 90 Ohm)
 - Some channels may be designed this way
- Nominal device termination is also 100 Ohm
 - But optimal performance with a given package and channel may require different termination
 - Some devices have configurable terminations
 - Work done for this project suggests 90 Ohm may be more adequate
- Should we keep assuming 100 Ohm?

Package crosstalk

Crosstalk issues

- Controlling crosstalk at high bandwidth channels (>30 GHz Rx bandwidth) can be challenging
 - Especially in packages and connectors
 - We should consider penalties of multi-lane package implementation
- Package NEXT in particular is not measured; only affects receiver (which has 3 dB allowance)
 - At 100 Gb/s, it may limit lane density or reach
 - Current channel data does not include package NEXT
- NEXT and FEXT have been issues in the BASE-T world for a long time
 - NEXT cancellation is not a normative requirement, but it is practically required, and relatively simple
 - FEXT cancellation is more complex and has lower ROI
 - Enabled by using loop timing
- Can we enable NEXT cancellation?

Possible paths for exploration

- Change the reference impedance to 90 Ohm
 - Seems to better match practice
- Programmable device termination
 - Why?
 - Can enable covering a larger space of channels
 - · Can increase design freedom of packages and channels
 - We can define a few values and some management register bits
 - · How to optimize may be out of scope
 - There are some existing specs that will be affected
 - ERL
 - COM
- NEXT cancellation
 - Why?
 - Can improve margins for receivers when NEXT is dominant
 - Can increase design freedom of packages and channels
 - Loop timing is a known requirement; Can we have it in the BASE-R architecture?
 - Implementation of "slave mode" already possible today, transparently
 - Can be an optional feature
 - Synchronous Ethernet already has something similar
 - We can define management register bits for slave capability and enable/disable
 - But need to prevent "mutual slave" configurations
 - Easy in KR/CR with AN/training; a solution for optics is required

Summary

- Impedance matching and crosstalk may strongly affect electrical link performance at 100 Gb/s
- Using new tools may help achieve our objectives
- More discussion is welcome