

Supporting Data To Demonstrate 100Gbps Capability of Proposed MDIs

Nathan Tracy

September 13, 2018

Objective: Provide Evidence to Support Proposed MDIs

- On July 25 ad hoc, *palkert_3ck_adhoc_01_072518.pdf* proposed 7 MDIs for inclusion in the project
- This presentation aims to support that proposal with a channel analysis based on one of the two MDIs that use a 0.6mm contact pitch as this tight pitch provides a challenging SI environment (OSFP).

Channel Details (from *tracy_100GEL_01a_0118*)

Total Thickness =154.4mils

Test vs Model Results

Top Row RL from Module (SDD22) - Layer 15, 12mil Vias

freq, GHz

-10

-50

-10-

-15-

-20-

-25

-30-

-35-

-40

-45· -50·

-55-

Magnitude(dB)

Magnitude(dB)

Bot Row RL from Module (SDD22) - Layer 15, 12mil Vias

Note: Measured channel includes second set of vias to test point, modeled channels do not include the second set of vias.

freq, GHz

100G Connector Improvements (in the same 15dB channel)

Efforts were focused on insertion loss and return loss optimizations

Note: Measured channel includes second set of vias to test point, modeled channels do not include the second set of vias.

Bot Row RL from Module (SDD22) - Layer 15, 12mil Vias

freq, GHz

IL(Bot Row) - PSFEXT (Bot Row Victim) 5 Aggressors

Improved Connector in a 12dB Channel – Layer 15 Route-out

		60	50	50	57	56	55	51	52	52	51	50	10	10	17	16	15	11	/12	12	/11	40	20	20	27	26	25	2/	22	22	21
\/: at:		00	35	30	57	50	55	54	55	JZ	51	50	49	40	47	40	45	44	45	42	41	40	- 39	30	57	30	35	54	- 35	52	51
VICTIM	Top Row	G	Tx1+	Tx1-	G	Tx3+	Tx 3-	G	Tx5+	Tx5-	G	Tx7+	Tx7-	G	SB	SB	SB	SB	G	Rx8-	Rx8+	G	Rx6-	Rx6+	G	Rx4-	Rx4+	G	Rx2-	Rx2+	G
		<u> </u>	1777.	1/1	9	172.	172	0	17.3	172	<u> </u>	1.7.7	177	<u> </u>	55	50	50	50	<u> </u>	10.0	10.01	<u> </u>	10.0	10.0.	<u> </u>	10.1	10.1.	<u> </u>	10.2	10.2.	<u> </u>
FEXT Aggressor	Victim	G	Tx2+	Tx2-	G	Tx4+	Tx4-	G	Tx6+	Tx6-	G	Tx8+	Tx8-	G	SB	SB	SB	SB	G	Rx7-	Rxy+	G	Rx5-	Rx5+	G	Rx3-	Rx3+	G	Rx1-	Rx1+	G
NEXT Aggressor		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

COM v2.41 – Improved OSFP Connector in 12dB, 15dB Channels

15 Crosstalk Aggressors – 8 NEXT AND 7 FEXT

Maximum Frequency = 50 GHz – 10MHz Step

COM script 2.41

COM script 2.41 (FFE: 0 pre-cursor + 4 post cursor)

(FFE: 2 pre-cursor + 4 post cursor)

	PAM-4 [IE	EE802.3ck]	New C2M configuration file:		PAM-4 [IEEE802.3ck]			
COM*	Case 1	Case 2	gniasi_3ck_adnoc_01a_082918.pdi	COM	Case 1	Case 2		
15dB	2.68	3.89		15dB	4.09	4.71		
12dB	2.71	4.1		12dB	4.20	4.89		

• COM script version 2.41 (com_ieee8023_93a_241a.m)

• Configuration settings (T1config_com_ieee8023_93a=100GEL_C2M_tp0_tp2_rxFFE7)

• COM > 3dB PASSES

• COM Test Case 1 and Test Case 2 differ in the value of the device package transmission line length z_p - 12mm and 30mm respectively

COM v2.41 – Improved OSFP Connector in 12dB, 15dB Channels

15 Crosstalk Aggressors – 8 NEXT AND 7 FEXT Maximum Frequency = 50 GHz – 10MHz Step

COM script 2.41 (exception to config file) FFE: 2 pre cursor + 6 post cursor + DFE 16 taps)

	PAM-4 [IE	EE802.3ck]
COM**	Case 1	Case 2
15dB	5.93	5.16
12dB	6.24	5.45

** • COM script version 2.41 (com_ieee8023_93a_241a.m)

• COM > 3dB PASSES

• COM Test Case 1 and Test Case 2 differ in the value of the device package transmission line length z_p - 12mm and 30mm respectively

Summary

- Selected OSFP MDI for 100Gbps analysis as the 0.6mm pitch provides a difficult SI environment
- Compared OSFP measured to model for model validation
- Inserted improved "100Gbps generation" connector into 15dB channel simulation
- Created new 12dB channel
- Provided analysis of both 15dB and 12dB channels
- Based on current COM definition, generally provides acceptable performance

