MaDIMTEK
 Discussion on FFE and DFE Coefficients Calculation in COM

Guo-Hau Gau, Mau-Lin Wu, Pei-Rong Li, Yuan-Hao Tung
MediaTek
IEEE 802.3ck Task Force

Outline

- COM and channels used in this analysis
- Non-Monotonic COM performance by increasing FFE tap number
- Root cause and ways to improve
- Discussion \& next step
- Summary

COM Tool Adopted

- COM 2.41
- Adopted COM ver2.41 (Link) released by Richard Mellitz
- Adopted the following parameters proposed by Richard for "100 G KR PAM4 DFE1 FFE $(3,1,24)^{\prime \prime}$
- T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-24.xls
- T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-20.xls
- T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-16.xls
" T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-12.xls
- PKG length $=30 \mathrm{~mm}$
" COM 2.41a
- Modified from COM 2.41 by extending the dimension of FV by 2
- Details in latter pages

Channels in this Simulation

Ch. ID	Description
A	Mellitz, Ideal Transmission Lines for Backplane $*_{1}$ (Link)
B	Mellitz, Initial BP - Best case Tachyon BP, $3^{\prime \prime}$ IL15to16 (Link)
C	Mellitz, Initial BP - Best case Tachyon BP, 13" IL25to26 (Link)
D	Mellitz, Cabled BP \& PCB Design Impact Using 112G Ready Connectors, Opt1_24dB $*_{2}$ (Link)
E	Mellitz, Cabled BP \& PCB Design Impact Using 112G Ready Connectors, Opt1_28dB L $_{3}$ (Link)

*1. Adopt the "Backplane channel" for analysis
*2. Adopt the channel of "CaBP_BGAVia_Opt1_24dB.zip"
*3. Adopt the channel of "CaBP_BGAVia_Opt1_28dB.zip"

Expectation - COM increases when FFE tap increases

" It's intuitive that COM values increases when FFE tap increases
" However, we found it's NOT true for COM 2.41
" Take Channel A as an example to do analysis

COM Values by ver. 2.41					
Channel	16-tap FFE	20-tap FFE	24-tap FFE	28-tap FFE	
A	2.65 dB	2.66 dB	$\mathbf{2 . 2 6 ~ d B}$	5.55 dB	
B	-0.38 dB	-0.29 dB	0.10 dB	0.59 dB	
C	-1.92 dB	-1.94 dB	$\mathbf{- 1 . 8 3 ~ d B}$	-1.47 dB	
D	2.51 dB	2.51 dB	3.26 dB	5.11 dB	
E	2.08 dB	2.08 dB	$\mathbf{1 . 7 9} \mathrm{~dB}$	4.38 dB	

Non-Monotonic Behavior of COM 2.41 - Varying FFE Tap \#

* Apply same TxFFE \& CTLE for all cases
- TxFFE $=\left[\begin{array}{lll}0 & 0.05-0.20 .75 & 0\end{array}\right], \mathrm{gdc}=-10, \mathrm{gdc} 2=-2$
" From 'Input SBR', there is reflection during 19
~ 21 Uls after main cursor
- For 16-tap \& 20-tap cases
- Not cover 'reflection': COM ~= 2.7 dB
- For 28-tap cases
- Overall 'reflection' is covered: $C O M \sim=5.6 \mathrm{~dB}$
- For 24-tap cases
- Due to some 'reflection' is NOT covered in the ' $\mathrm{FV}^{\prime}{ }_{1}$, it's boosted up by FFE
- COM value degrades to ${ }^{\sim}=-0.45 \mathrm{~dB}<2.7 \mathrm{~dB}(20-$ tap)
* Question: is this the true behavior of Receiver?
*1. Refers to Page 7 of "Mellitz 3ck 01 0718.pdf" for details of the 'forcing vector (FV)'

Solution (2.41a) - Modifications from COM 2.41

* Apply same TxFFE \& CTLE for all cases
- TxFFE = [0 $0.05-0.20 .750]$, gdc = -10, gdc2 = -2
- In order to avoid 'non-monotonic behavior', we tried COM 2.41a
- Take FFE with 24 taps as an example
- Range of coefficients to be calculated [Pre, Main, Post $]=[3,1,20]$
- Range of forcing vector (FV) is extended from [3, 1, 20] to [$3,1,20+2$], on purpose of considering overall reflections when calculating FFE/DFE coefficients
- Results
- We can find COM value monotonic increases by increasing FFE tap number for Channel A
- However, it can't apply generally to solve issues for

COM Comparisons for Channel A
 other channels

COM 2.41a Results

COM Values by ver. 2.41a				
Channel	16-tap FFE	20-tap FFE	24-tap FFE	28-tap FFE
A	2.65 dB	2.65 dB	2.90 dB	5.55 dB
B	-1.56 dB	-0.21 dB	0.18 dB	-0.26 dB
C	-2.72 dB	-2.65 dB	-2.51 dB	-2.40 dB
D	1.57 dB	1.46 dB	2.90 dB	5.16 dB
E	2.67 dB	2.57 dB	2.30 dB	3.26 dB

* By 'zero-forcing' approach adopted in COM 2.41 (\& 2.41a as well)
- Crosstalk and noise not count in calculating FFE \& DFE coefficients
- May not result in 'optimal' FFE/DFE coefficients
- Question: any alternative approaches?

Discussion \& Next Step

" What alternative ways are feasible for FFE/DFE calculation?
" Exhausted search

- Not feasible!
- 24-tap FFE with maximum absolute value of 0.2 and resolution of 0.05 requires $\left(2^{*} 0.2 / 0.05+1\right)^{24} \sim=1 e 23$ candidates to be calculated
" Some adaptation to reduce the complexity
- Maybe too implementation-specific \& difficult to reach consensus
* Some closed-form solution is suggested
- Such as "Salz SNR" used by Broadcom* ${ }_{*_{1}}$
* Need to modify it to finite-tap version
- Maybe MMSE-DFE $*_{2}$
*1. Page 3 of "healey 100GEL 01 0318.pdf"
*2. Reference: Book by John M. Cioffi

Summary

" By adopting 'zero-forcing' approach to calculate FFE/DFE coefficients in COM 2.41, we found

- COM performance doesn't monotonic increase when FFE tap increases
- Can't solve this issue even by extending forcing vector (FV) dimension
" Suggest to consider alternative approach to calculate FFE/DFE coefficients
- Some closed-form preferred, such as Salz SNR, MMSEDFE

MEDIИTEK
 everyday genius

Extending FV length by 2 - The Effects

" By same TxFFE \& CTLE

- By extending 2 taps for FV range, the SBR after FFE shows smaller residue ISI comparing to COM 2.41

Formula of MMSE solution for FFE/DFE

$$
\mathbf{w}=\mathbf{1}_{\Delta}^{*} \mathbf{P}^{*}\left(\mathbf{P} \mathbf{P}^{*}-\mathbf{P} \mathbf{J}_{\Delta} \mathbf{J}_{\Delta}^{*} \mathbf{P}^{*}+\frac{1}{\varepsilon_{x}} \mathbf{R}_{\mathrm{nn}}\right)
$$

$$
\mathbf{b}=\mathbf{w} \mathbf{P} \mathbf{J}_{\Delta} \quad \sigma_{e}^{2}=\varepsilon_{x}\left(1-\mathbf{w} \mathbf{P 1} 1_{\Delta}\right)
$$

$$
S N R_{\text {biasedMMSE-DFE }}=\frac{\varepsilon_{x}}{\sigma_{e}^{2}}=\frac{1}{1-\mathbf{w P 1}}
$$

References

- Book by John M. Cioffi
" https://web.stanford.edu /group/cioffi/book/
- Details in Chapter 3.7.4 FIR MMSE-DFE
" We may try to adopt MMSE approach to calculate
- FFE and DFE coefficients

