

Discussion on FFE and DFE Coefficients Calculation in COM

Guo-Hau Gau, Mau-Lin Wu, Pei-Rong Li, Yuan-Hao Tung MediaTek IEEE 802.3ck Task Force

Outline

- COM and channels used in this analysis
- Non-Monotonic COM performance by increasing FFE tap number
- Root cause and ways to improve
- Discussion & next step
- o Summary

COM Tool Adopted

• COM 2.41

- Adopted COM ver2.41 (Link) released by Richard Mellitz
- Adopted the following parameters proposed by Richard for "100 G KR PAM4 DFE1 FFE(3,1,24)"
 - T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-24.xls
 - T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-20.xls
 - T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-16.xls
 - T1config_com_ieee8023_93a=100GEL-KR_DFE1_RxFFE3-12.xls
- PKG length = 30 mm
- COM 2.41a
 - Modified from COM 2.41 by extending the dimension of FV by 2
 - Details in latter pages

Channels in this Simulation

Ch. ID	Description
А	Mellitz, Ideal Transmission Lines for Backplane _{*1} (Link)
В	Mellitz, Initial BP – Best case Tachyon BP, 3" IL15to16 (<u>Link</u>)
С	Mellitz, Initial BP – Best case Tachyon BP, 13" IL25to26 (Link)
D	Mellitz, Cabled BP & PCB Design Impact Using 112G Ready Connectors, Opt1_24dB _{*2} (<u>Link</u>)
E	Mellitz, Cabled BP & PCB Design Impact Using 112G Ready Connectors, Opt1_28dB _{*3} (<u>Link</u>)

*1. Adopt the "Backplane channel" for analysis

- *2. Adopt the channel of "CaBP_BGAVia_Opt1_24dB.zip"
- *3. Adopt the channel of "CaBP_BGAVia_Opt1_28dB.zip"

Expectation – COM increases when FFE tap increases

- It's intuitive that COM values increases when FFE tap increases
- However, we found it's NOT true for COM 2.41
- Take Channel A as an example to do analysis

COM Values by ver. 2.41

Channel	16-tap FFE	20-tap FFE	24-tap FFE	28-tap FFE
А	2.65 dB	2.66 dB	2.26 dB	5.55 dB
В	-0.38 dB	-0.29 dB	0.10 dB	0.59 dB
С	-1.92 dB	-1.94 dB	-1.83 dB	-1.47 dB
D	2.51 dB	2.51 dB	3.26 dB	5.11 dB
E	2.08 dB	2.08 dB	1.79 dB	4.38 dB

Non-Monotonic Behavior of COM 2.41 – Varying FFE Tap

- Apply same TxFFE & CTLE for all cases
 - TxFFE = [0 0.05 -0.2 0.75 0], gdc = -10, gdc2 = -2
- From 'Input SBR', there is reflection during 19
 ~ 21 UIs after main cursor
- For 16-tap & 20-tap cases
 - Not cover 'reflection': COM ~= 2.7 dB
- For 28-tap cases
 - Overall 'reflection' is covered: COM ~= 5.6 dB
- For 24-tap cases
 - Due to some 'reflection' is NOT covered in the 'FV'_{*1}, it's boosted up by FFE
 - COM value degrades to \sim = -0.45 dB < 2.7 dB (20-tap)
- Question: is this the true behavior of Receiver?

*1. Refers to Page 7 of "<u>Mellitz 3ck 01 0718.pdf</u>" for details of the 'forcing vector (FV)'

Solution (2.41a) – Modifications from COM 2.41

- Apply same TxFFE & CTLE for all cases
 - TxFFE = [0 0.05 -0.2 0.75 0], gdc = -10, gdc2 = -2
- In order to avoid 'non-monotonic behavior', we tried COM 2.41a
 - Take FFE with 24 taps as an example
 - Range of coefficients to be calculated [Pre, Main, Post] = [3, 1, 20]
 - Range of forcing vector (FV) is extended from [3, 1, 20] to [3, 1, 20+2], on purpose of considering overall reflections when calculating FFE/DFE coefficients
- Results
 - We can find COM value monotonic increases by increasing FFE tap number for Channel A
 - However, it can't apply generally to solve issues for other channels

Link: SBR of 2.41a

COM 2.41a Results

	2.41a			
Channel	16-tap FFE	20-tap FFE	24-tap FFE	28-tap FFE
А	2.65 dB	2.65 dB	2.90 dB	5.55 dB
В	-1.56 dB	-0.21 dB	0.18 dB	-0.26 dB
С	-2.72 dB	-2.65 dB	-2.51 dB	-2.40 dB
D	1.57 dB	1.46 dB	2.90 dB	5.16 dB
E	2.67 dB	2.57 dB	2.30 dB	3.26 dB

- By 'zero-forcing' approach adopted in COM 2.41 (& 2.41a as well)
 - Crosstalk and noise not count in calculating FFE & DFE coefficients
 - May not result in 'optimal' FFE/DFE coefficients
- Question: any alternative approaches?

Discussion & Next Step

- What alternative ways are feasible for FFE/DFE calculation?
- Exhausted search
 - Not feasible!
 - 24-tap FFE with maximum absolute value of 0.2 and resolution of 0.05 requires (2*0.2/0.05+1)²⁴ ~= 1e23 candidates to be calculated
- Some adaptation to reduce the complexity
 - Maybe too implementation-specific & difficult to reach consensus
- Some closed-form solution is suggested
 - Such as "Salz SNR" used by Broadcom_{*1}
 - Need to modify it to finite-tap version
 - Maybe MMSE-DFE_{*2}

*1. Page 3 of "healey 100GEL 01 0318.pdf"

*2. Reference: Book by John M. Cioffi

Summary

- By adopting 'zero-forcing' approach to calculate FFE/DFE coefficients in COM 2.41, we found
 - COM performance doesn't monotonic increase when FFE tap increases
 - Can't solve this issue even by extending forcing vector (FV) dimension
- Suggest to consider alternative approach to calculate FFE/DFE coefficients
 - Some closed-form preferred, such as Salz SNR, MMSE-DFE

everyday genius

Extending FV length by 2 – The Effects

Formula of MMSE solution for FFE/DFE

$$\mathbf{w} = \mathbf{1}_{\Delta}^{*} \mathbf{P}^{*} \left(\mathbf{P} \mathbf{P}^{*} - \mathbf{P} \mathbf{J}_{\Delta} \mathbf{J}_{\Delta}^{*} \mathbf{P}^{*} + \frac{1}{\varepsilon_{x}} \mathbf{R}_{nn} \right)$$
$$\mathbf{b} = \mathbf{w} \mathbf{P} \mathbf{J}_{\Delta} \qquad \sigma_{e}^{2} = \varepsilon_{x} \left(1 - \mathbf{w} \mathbf{P} \mathbf{1}_{\Delta} \right)$$
$$SNR_{biased MMSE-DFE} = \frac{\varepsilon_{x}}{\sigma_{e}^{2}} = \frac{1}{1 - \mathbf{w} \mathbf{P} \mathbf{1}_{\Delta}}$$

- References
 - Book by John M. Cioffi
 - <u>https://web.stanford.edu</u> /group/cioffi/book/
 - Details in Chapter 3.7.4 FIR MMSE-DFE
- We may try to adopt MMSE approach to calculate
 - FFE and DFE coefficients

