

C2M Receiver Architecture

Ali Ghiasi Ghiasi Quantum LLC

IEEE 802.3ck Task Force Meeting Bangkok

November 12, 2018

Background

- Back channel training has been proposed for C2M in <u>sun_3ck_01a_0918.pdf</u> as a lower power SerDes interface
- C2M implementations trade-offs are given in <u>slavick_3ck_02_0918.pdf</u> suggesting back channel will reduce complexity of the C2M receiver
- This contribution will show that a self contained C2M receiver that doesn't require back channel training is simpler, more robust, less complex, and low power!

C2M Link Options

During Sept. Interim <u>slavick_3ck_02_0918.pdf</u> presented 6 receiver architecture from simple to continuous protocol adaptation

- Majority voted for Slavick option B where the receiver is self contained and does not require back channel training
- This contribution will show that Slavick option B is simple with complexity, more robust, and low power!

	A: Low loss C2M	B: Rx does it all	C: Regs at startup	D: Regs continuously	E: Startup Protocol	F: Continuous Protocol
Reach	Short	Medium	Medium	Medium	Medium	Medium
Module Electrical Rx	Simple	Complex	Simple	Simple	Simple	Simple
Host Electrical Tx FFE	Fixed	Fixed	Adaptive	Adaptive	Adaptive	Adaptive
Module Electrical Rx Input Eye	HCB based	HCB based	Set at startup VT	Updated over VT shifts	Set at startup VT	Updated over VT shifts
Host Compliance	Same as past	Similar to past	KR/CR style	KR/CR style	KR/CR style	KR/CR style
Management involvement	Low	Low	Low -> High (burst at startup?)	High	Low	Low
LinkUp time	Shortest	Short	Short->Long	Short->Long	Medium	Medium

Straw poll #3:

If we go with 16dB, where should equalization be added?

(A) Fixed TX FFE and more complex RX (slavick_3ck... option B)

- (B) Adaptive TX with some kind of link training (slavick_3ck... option C/D/E/F)
 - (C) More information needed

Pick one

A: 39, B: 11, C: 16

Example of Low Power FFE Suitable for 100G AUI

Momtaz analog FFE implementation is a 40 GBd 7-Tap T/2 FFE with 2 pre-cursor and a power of just 80 mW in 65 nm CMOS based on clever design of using transconductance amplifier instead of delay line

- The implementation uses an innovative passive-active delay element which are process invariant
- Baseline FFE for 100GEL is 5 taps T-Spaced with no pre-curso
- Momtaz FFE with 20 GHz BW would not need to increase the BW by more than 30%
- The delay T can be increased from 12.5 ps to 18.8 ps by adjusting transconductance amplifier
- With 16 nm process fast enough most of the inductors would be elimianted
- The estimated above circuit in 16 nm CMOS would be ~40 m
- Momtaz implementation uses inductors and may not be suitable for high port counts ASCIs
- $Area=0.75 \text{ mm}^2$
- Power/(datarate.delay)=21.6 μ W
- The estimated 7 Tap FFE with 2 pre-cursor to support PAM4 in 16 nm CMOS would be about 60 mW.

Fig. 1. *M*-tap FFE block diagram.

Pre-cursor taps

Afhsin Momtaz, An 80 mW 40 Gb/s 7-Tap T/2-Spaced Feed-Forward Equalizer in 65 nm CMOS IEEE Journal of Solid-State Circuit, Vol. 45, No. 3, march 2010.

Post-cursor taps

4

©

-///->

000000

Example of Low Power FFE Suitable for 100G AUI

- Mammei analog FFE implementation is a 10-25 GBd 7-Taps FFE with no restriction on pre-cursor and a power of 90 mW in 28 nm LP CMOS
 - Delay elements are created with transconductance amplifier similar to Momtaz
 - But Mammei uses transimpedance amplifier to sum the current instead of using inductors as in case of Momtaz
 - Mammei FFE similar to Momtaz has BW of ~20 GHz and for 53.1 GBd operation would not need to increase the BW by ~ 30%
 - The delay is adjustable from 30-75 ps which can be easily be reduced to 18.8 ps
 - The estimated above circuit in 16 nm CMOS would be ~58 mW
 - Mammei compact FFE implementation suitable for high density ASIC integration
 - Area=0.085 mm²
 - Power/(datarate.delay)=20 μW
- The estimated 7 Tap FFE for PAM4 in 16 nm CMOS based on Mammei desing would be about 88 mW.

Example of Low Power FFE Suitable for 100G AUI

Boesch analog FFE implementation is a 20 GBd 5-Taps FFE with no restriction on pre-cursor and a power of 20 mW in 40 nm CMOS

- Delay elements are created with transconductance amplifier similar to Momtaz
- But Boesch uses inverters for low power and transimpedance amplifier to sum the current instead of using inductors as in case of Momtaz
- The delay was optimized for 25 ps and 53.1 GBd operation would require reducing delay to 18.8 ps
- The estimated above circuit in 16 nm CMOS would be ~10.5 mW
- Boesch compact FFE implementation suitable for high density ASIC integration
- Area=0.003 mm²
- Power/(datarate.delay)=4 μW

The estimated 5 Tap FFE for PAM4 in 16 nm CMOS based on Boesch would be <20 mW!</p>

Ryan Boesch, A 0.003 mm2 5.2 mW/tap 20 GBd Inductor-less 5-Tap Analog RX-FFE, Symposium on VLSI Circuits, 2016.

Coefficients

5 bits + sign

 v_i

delay

delay

delay

delay

!! Summing Circuit !

Adding Analog Low Power FFE EQ to sun_3ck_01a_0918

- Power for non-DAC TX implementation should be based on conventional current summing implementation
 [5*] instead of scaling down higher power DAC implementations
- Asymmetric balanced EQ is about the same as Analog FFE if one exclude Mux/De-mux, LT/PCS logic, and channel estimator power required for asymmetric balanced EQ operation!

Architecture	Balanced EQ (1. Asymmetric, 2. symmetric)	3. Analog DFE **	4. ADC Based	5. Analog FFE	
Equalization	TX: FIR (2/4 taps for asymmetric structure, 2/11 taps for symmetric structure)	TX: FIR (2/4) RX: CTLE, with DFE taps	TX: FIR (2/4) RX: CTLE, 6-bit ADC, 8 postcursor digital FFE	TX: FIR(2/4) RX:CTLE, Analog 5-7 tap FFE	
TX Power*(mW)	196	196 *157mW	196 *157mW	157 mW (by scaling TX of [5] from 64 Gb/s to 112 Gb/s)	
· · · ·	224 (symmetric structure)	-			
RX Power (mW)	239 (by scaling [6])	436 (by scaling [3], 2 DFE tail tap power is very low)	498(310 by scaling [5] front end for 13.6dB channel;108 for FFE by scaling FIR of [7] for 6b input;80 for PLL, deserializer and CDR)	220 mW (by scaling [6] to 112G) +60 mW for 7 T FFE Total RX Power=280 mW	
Relative total Power (mW)	0 (435 as Baseline for asymmetric)28 (463 for symmetric)	197 (total 632)	259 (total 694)	+2 mW (total power 437 mW)	
Power Difference for 2x400G Module C2M at 106.25G (mW)	0 for asymmetric (Total 3480) 224 for symmetric (Total 3704)	1,576 1269 mW (Total 5956) ⁴⁷⁴⁴ mW	2,072 1760 mW (Total 5552) 5240 mW	+16 mW (total 3480)	
Projection with 30% reduction (mw)***	0 for asymmetric (Total 305) 19 for symmetric (Total 324)	137 (total 442) 110 (total 415)	181 (total 486) 154 (total 459) mW	0 Analog FFE (Total 305 mW)	

For list of Sun reference please see http://www.ieee802.org/3/ck/public/18_09/sun_3ck_01a_0918.pdf. A. Ghiasi IEEE 802.3ck Task Force C

-^\/\-

000000

000000

A reliable method is necessary to train the TX FFE

- Analog CTLE or CTLE/5T FFE receivers may only use simple threshold detectors to determine eye opening and/or spectrum shaping shown here
 - A simple low power threshold detector or HP/LP filter can't provide sufficient information such that transmit FFE is adjusted to new optimum setting
 - There is no guarantee that the adaptation will converge to optimum setting and not local minima
 - There is no guarantee in the process of TX adaptation that the link will stay up
- The power and complexity of more sophisticated monitoring scheme such as channel estimator which can provide more deterministic TX convergence must be considered!

Figure 4.7.2: Equalizer architecture.

J. Lee, A 20 Gb/s Adaptive equalizer in 0.13 um CMOS Technology, 4.7, ISSCC 2006.

000000

000000

╶ヘ∧∧ݷ

Complexity of adding Link Training (LT) to Optical Modules

An optical link consist of 2-4 segments where each segment must be trained

- LT on the backplane or CR links are point-point LT at start up only
- C2M links are segmented and would require continuous adaptation through slow-unpredictable I2C
- A low power CTLE RX does not have DSP capabilities that can guide TX FFE to optimum setting in few steps

C

-1//->

000000

000000

- There is no guarantee that TX FFE will not get stuck in local minima or even worse the link dropping
- 4 segmented link with 8 LT engine need to work seamlessly as shown in diagram below just to to bring up an optical link
- A module CDR implementing backchannel LT would require full Mux/De-mux with AN/PCS logic ruling out serial CDR implementations and non-CMOS implementations
- An optical module with back channel LT will be significantly more complex to qualify, mange, and diagnose.

Summary

- Propose balanced asymmetric implementation using long TX FFE with back channel dramatically increases link complexity, difficult to guarantee will not go down during continuous training, and may not save power
 - The proposed balanced asymmetric scheme not only is more complex but actually may not be lower power as requires full mux/de-mux with AN/PCS implemented in the module PMA
 - Unless the receiver implements a channel estimator the is possibility that LT will be stuck in local minima
 or worse the link may fail during operation
 - Proposed balanced asymmetric proposal does not address high crosstalk channels where a DFE maybe required
- Analog CTLE with 5T RX FFE offers lower power, lower latency, without requiring full mux/demux and AN/PCS, without complex host-module dependencies, and can supports up to 16 dB host channels (see ghiasi_3ck_03_1118).