

Performance comparison study for Rx vs Tx based equalization for C2M links

Karthik Gopalakrishnan, Basel Alnabulsi, Jamal Riani, Ilya Lyubomirsky, and Sudeep Bhoja, Inphi Corp.

IEEE P802.3ck Task Force Meeting, Nov. 2018

Supporters

- Jane Lim, Cisco
- Upen Reddy Kareti, Cisco
- Pirooz Tooyserkani, Cisco
- Jeremy Stephens, Intel
- Ali Ghiasi, Ghiasi Quantum LLC
- Venugopal Balasubramonian, Marvell

Outline

- AWGN theory on Tx vs. Rx equalization
- Simulation results based on realistic channels and SerDes models

Assumptions for Theoretical Model

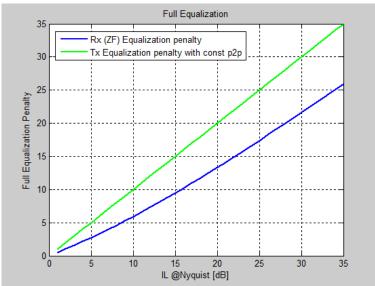
- Channel amplitude response has linear roll-off in dB
- Infinite length linear equalization
- Zero forcing solution
- Noise modeled as AWGN

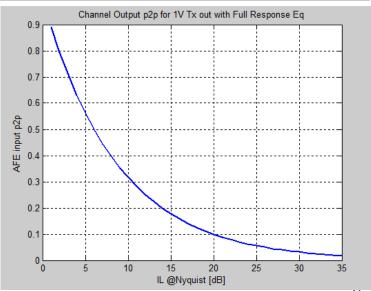
Equalization Penalty


Rx Linear Equalization Penalty:

$$Rx_P = 10\log 10 \left(T \int_{-1/2T}^{1/2T} 1/|H(f)|^2 df \right)$$

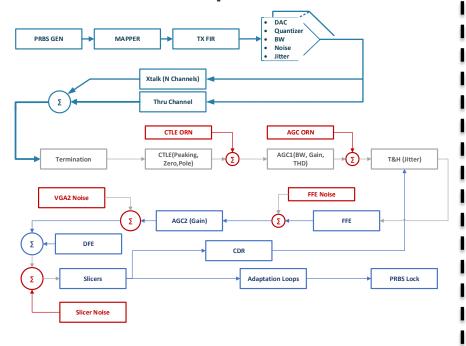
where |H|=10^(-2T*f*IL/20) and IL is the insertion loss at Nyquist.


$$Rx_P = 10\log 10 \left(\frac{10^{IL/10} - 1}{IL.\ln(10)/10} \right)$$


Tx Equalization Penalty:

Theoretical Equalization Penalty Comparison

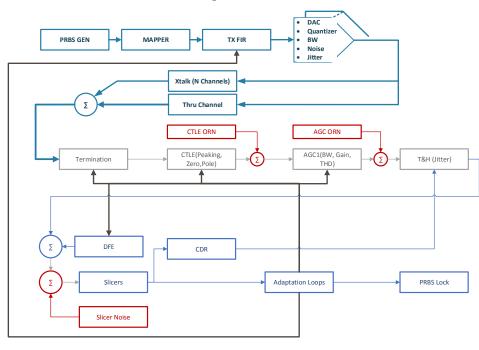
- Tx equalization is worse than Rx equalization. Rx Eq penalty follows L2norm of 1/|H| and Tx Eq penalty follows Infinite-norm of 1/|H|.
- At IL=12dB, Tx penalty is 12dB but Rx penalty is 7.3dB. 4.7dB delta.
- With say IL=12dB, with Tx equalization, the Rx input p2p is only 250mvp2p for 1Vp2p @ Tx out.


Specs used for the analysis

	High level spec	s used fo	Comments	
	Buad Rate	53.125	Gbuad	
XL	TX Swing	0.8	Vdpp	
	RLM	0.95	-	
	SNDR	33	dB	
	RJ	175	fs rms	
	DJ	400	fs pk-pk	
	FIR	4	Taps	2 Pre
	TX Rise time	6.5	ps	20%-80%
X	CTLE Boost	10	dB	
	CTLE 2nd Pole	40	GHz	
	Rx Noise	4	mV rms	actual density incorporated
	RJ	175	fs rms	
	DJ	600	fs pk-pk	
	Die CAP	130	fF	

Simulation Model

Model 1: "Rx EQ"


Tx 4 Tap FIR

Rx 6 Tap FFE

Model 2: "Tx EQ"

Tx 11 Tap FIR

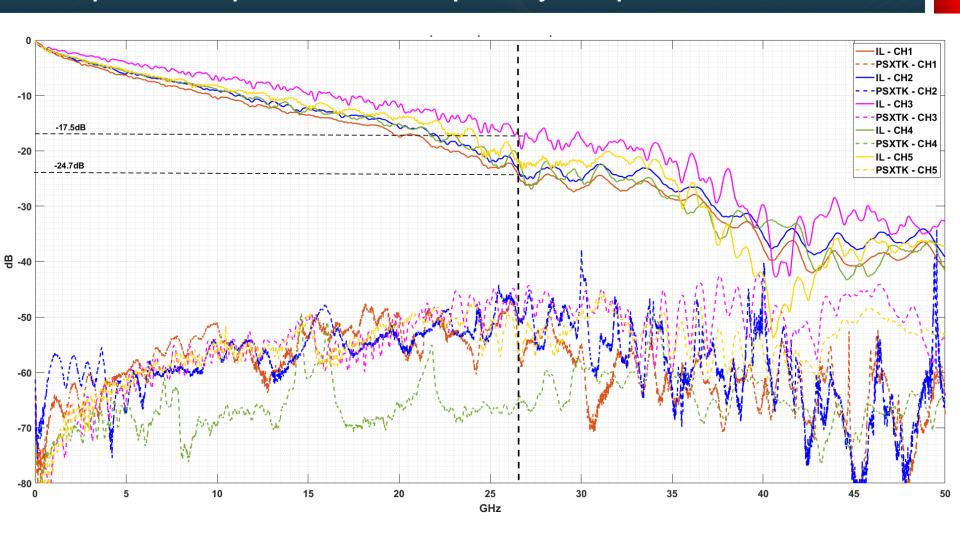
No Rx FFE

Noise contribution of AFE blocks added at the appropriate location in the link

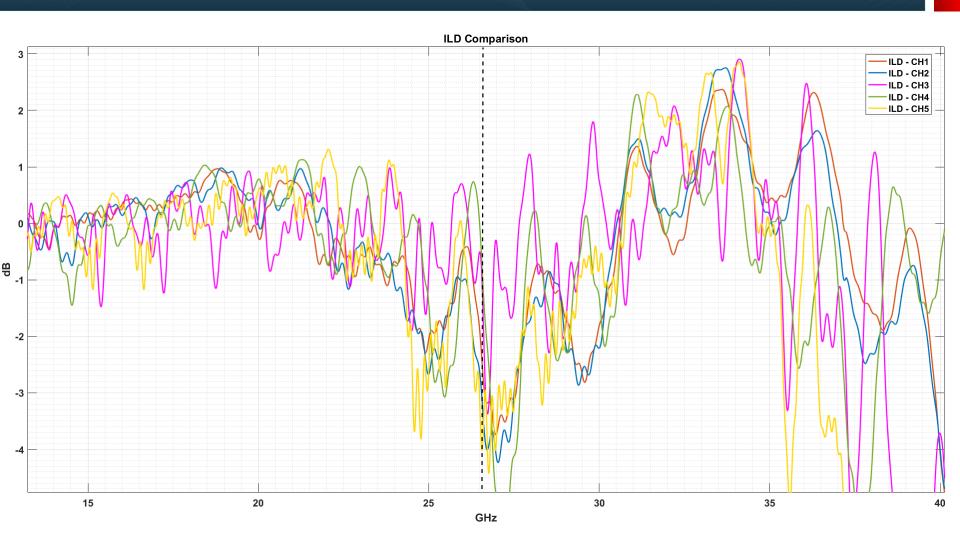
Tx and Rx FFE optimization

- Rx FFE is optimized using Minimum Mean Square Error (MMSE) criteria for any given Tx FIR, channel, xtalk etc.
- The Tx FIR is brute force optimized based on the link SNR.

Channels


5 channels were selected for the analysis

- 16dB C2M channel contribution from lim_3ck_01_0918 (referred to CH1)
 - Spokane contribution
- 14dB C2M channel contribution from lim_3ck_01b_0718 (referred to as CH2)
- Customer proprietary channel (referred to as CH3)
- Channel contribution from tracy_100GEL_06_0118 (referred to CH4)
 - OIF Micro-via case
- Channel contribution from mellitz_3ck_02_0518 (referred to CH5)
 - 14dB BC-BOR-N-N-N


Package models and die models

- Channel above include cascade of both PKG and Die models for Thru and Xtalk channels
- No PKG cross-talk is included in the simulations
- Uses a 30mm host package design from current customer
- Uses a 4mm package design from current product indicative of 100G devices
- Uses a ~130fF equivalent load for the die

Bump to bump channel frequency response

ILD Comparison

SNR Simulation Results

				Channel - 1	Channel - 2	Channel - 3	Channel - 4	Channel - 5
		IL @ Nyq (dB)		24.7	23.4	17.2	21.4	22.9
		ILDMax (upto	Nyq) dB	4.8	5.2	4.2	4.7	5.5
Architecture		Configuration		SNR (dB)				
11T TX FFE (2Pre) → RX CTLE/VG/	#Tail DFE	0	19.3	19.8	19.3	18.8	18.7	
TIT IN FFE (2PTE) > RX CILE/VG/	#Tail DFE	16	19.7	20.8	21.1	19.5	19.2	
4T TX FFE (2Pre) → RX CTLE/VGA → 6T RX FFE (2 Pre) → Tail DFE		#Tail DFE	0	19.4	19.4	21.8	20.5	20.2
		#Tail DFE	16	22.4	23.5	23.8	21.6	22.5

■ Note:

— Rx FFE without DFE has shorter span in the simulations (covers upto 3 post + CTLE), compared to TX FFE case which has upto 8 post taps + CTLE

Summary

- TX FFE heavy architecture shows worse SNR compared to RX FFE
 - The noise at various input blocks of the receiver was included based on analog simulations
 - 19.5dB SNR is not sufficient to close system budgets to account for tolerances, and yield
 - A brute force search on TX FFE is not a practical solution and does not address background adaptation
- Rx FFE based architecture is more robust under the various channels studied (lossy, reflective, etc)
- A detailed implementation of the RX FFE based architecture and TX FFE based architecture shows only a 10% power delta between the 2 cases in 7nm process
 - Assumes a Tail DFE is present in the receiver