Interleaved 100GbE FEC Sublayer

IEEE P802.3ck

November 2018 Bangkok

Mark Gustlin – Cisco Pete Anslow – Ciena Gary Nicholl - Cisco Shawn Nicholl – Xilinx Dave Ofelt – Juniper Kapil Shrikhande – Innovium Jeff Slavick - Broadcom

Introduction

- Pete Anslow showed in <u>anslow_3ck_01_0918.pdf</u> that there is some FEC performance concerns for 100GbE with multi-tap DFEs
- This presentation looks at a possible new FEC sublayer that can improve the performance for these cases

Burst Error Impact on 100G FEC Gain

Pete Anslow showed in <u>anslow_3ck_01_0918.pdf</u> that there is concern with the 100G FEC performance with multi-tap DFE burst errors, even with precoding

100G 5-tap DFE results (0.7, 0, 0.2, 0, 0.2) with precoding

Burst Error Impact on 400G FEC Gain

Pete Anslow showed in <u>anslow_3ck_01_0918.pdf</u> that 400G does not have the same concern

400G 5-tap DFE results (0.7, 0, 0.2, 0, 0.2) with precoding

What to Do about it?

- > Don't touch the 400/200G PCS/FEC
 - It doesn't have the same flaring problem
- Look at modifications to the 100G FEC architecture, but only for the longer more difficult channels
 - No changes for C2M, this preserves full link with 100GBASE-DR (and MSA optical links)
 - No changes to existing 100G per lane optical PMDs
 - Don't require PCS/FEC in optical modules
 - Look at changes for: 100GBASE-KR, 100GBASE-CR
 - C2C is a special case that needs more investigation
- Seems to be consensus that even if DFE is used for a C2M interface, the tap weights would be very low and not cause a problem with burst errors
 - Does anyone disagree wit this?
 - What tap weights should we assume if we will use DFE?
- > Proposed new FEC sublayer:
 - New FEC sublayer that does 2:1 FEC codeword interleaving
 - Support both 2x53G and 1x106G configurations

A Note About C2C Interfaces

- > Still a lot of discussion around what the chip to chip interface is
- > One possibility is we end up with two C2C interfaces
 - C2C-S (short) similar to what Ali Ghiasi is proposing in ghiasi_3ck_adhoc_01_102418.pdf
 - Still part of an end to end FEC budget, similar to a C2M interface
 - C2C-L (long), same/similar loss as the KR interface
 - Separate FEC domain compared to any other part of the link
 - Introduces segmented FEC
- I will use the -S and -L designations for now later in this presentation to differentiate these

Possible New 100G FEC Sublayer

> Based on 2x50G RS(544,514) FEC interleaving

A portion of a possible new FEC sublayer

Assuming ABABAB ordering

Latency for the 100G Interleaved FEC Sublayer

Current Clause 91 RS544			
Latency Contributor			
51ns	Block time		
50-100ns	Processing*		
101-151ns	Total		

Potential RS544 Interleaved			
Latency Contributor			
102ns	Block time		
50-150ns	Processing*		
152-252ns	Total		

*depends on parallelism/latency tradeoffs

Architectural View

100GBASE-DR 100GAUI-1 C2M I/F 100GBASE-KR 100GBASE-CR

PMA for New FEC Sublayer

- > PMA can be used as a pass through (2x53G)
- > Or to bit mux down to a single lane (1x106G)
- Simple bit muxing

Alignment Markers

Existing Clause 82/91 Marker Format

FEC		Reed-Solomo	n symbol index	, <i>k</i> (10-bit symbols)	
lane, i	0 1 2 3 4 5 6	7 8 9 10 11 12 1	3 14 15 16 17 18	3 19 20 21 22 23 24 25 2	26 27 28 29 30 31 32 33
0	0 amp_tx_0 63 0	amp_tx_4 63 0	amp_tx_8	_{63 0} amp_tx_12 _{63 0}	amp_tx_16 ₆₃
1	0 amp_tx_1 63 0	amp_tx_5 _{63 0}	amp_tx_9	₆₃ amp_tx_13 ₆₃	amp_tx_17 ₆₃
2	0 amp_tx_2 63 0	amp_tx_6	amp_tx_10	amp_tx_14 63 0	amp_tx_18 🔥 💧
3	0 amp_tx_3 63 0	amp_tx_7 _{63 0}	amp_tx_11 _e	₆₃ amp_tx_15 ₆₃ 0	amp_tx_19 63
= 5-k	bit pad				tx_scrambled

Figure 91–4—Alignment marker mapping to FEC lanes

Proposed New Interleaved Marker Format (supporting two FEC lanes)

- $amp_tx_0 = am0$, $amp_tx_1 = am0$, $amp_tx_2 = am2$ etc.
- No repetition at the end of the AM block

FEC	Reed-Solomon symbol index, k (10-bit Symbols)						
Lane, i	0 1 2 3 4 5 6	7 8 9 1 1 1 1 1 0 1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 6 6 6 6 6 7 8 9 0 1 2 3 4	
0	amp_tx_0	amp_tx_2	amp_tx_4	000	amp_tx_16	amp_tx_18	
1	amp_tx_1	amp_tx_3	amp_tx_5		amp_tx_17	amp_tx_19	

100GbE Example Use Cases - Optical

100GbE Example Use Cases – Copper

100GbE Example Use Cases – Needs More Work

There is a separate effort to specify some sort of XS that might be usable for this scenario

More Work to be Done

- Look in detail at how to handle C2C interfaces, with bigger questions open around what does the C2C I/F look like from a loss point of view
 - Do we have two C2C interfaces, a short and a long?
 - Each with different implications on the FEC budget/partitioning?
- > Agree to a model for DFE on a C2M, and run sims to see the performance
 - If DFE will be used for C2M

Conclusion

This presentation shows a possible interleaved FEC sublayer for the harder 100GbE single lane channels

Thanks!