## Interleaved 100GbE FEC Sublayer

## IEEE P802.3ck

November 2018 Bangkok
Mark Gustlin - Cisco
Pete Anslow - Ciena
Gary Nicholl - Cisco
Shawn Nicholl - Xilinx
Dave Ofelt - Juniper
Kapil Shrikhande - Innovium
Jeff Slavick - Broadcom

## Introduction

》 Pete Anslow showed in anslow 3ck 01 0918.pdf that there is some FEC performance concerns for 100GbE with multi-tap DFEs
> This presentation looks at a possible new FEC sublayer that can improve the performance for these cases

## Burst Error Impact on 100G FEC Gain

》 Pete Anslow showed in anslow 3ck 01 0918.pdf that there is concern with the 100G FEC performance with multi-tap DFE burst errors, even with precoding

## 100G 5-tap DFE results ( $0.7,0,0.2,0,0.2$ ) with precoding



## Burst Error Impact on 400G FEC Gain

》 Pete Anslow showed in anslow 3ck 01 0918.pdf that 400G does not have the same concern

## 400G 5-tap DFE results $(0.7,0,0.2,0,0.2)$ with precoding



## What to Do about it?

》 Don't touch the 400/200G PCS/FEC

- It doesn't have the same flaring problem

Look at modifications to the 100G FEC architecture, but only for the longer more difficult channels

- No changes for C2M, this preserves full link with 100GBASE-DR (and MSA optical links)
- No changes to existing 100G per lane optical PMDs
- Don't require PCS/FEC in optical modules
- Look at changes for: 100GBASE-KR, 100GBASE-CR
- C2C is a special case that needs more investigation
- Seems to be consensus that even if DFE is used for a C2M interface, the tap weights would be very low and not cause a problem with burst errors
- Does anyone disagree wit this?
- What tap weights should we assume if we will use DFE?
> Proposed new FEC sublayer:
- New FEC sublayer that does 2:1 FEC codeword interleaving
- Support both $2 \times 53 \mathrm{G}$ and 1x106G configurations


## A Note About C2C Interfaces

Still a lot of discussion around what the chip to chip interface is
> One possibility is we end up with two C2C interfaces

- C2C-S (short) similar to what Ali Ghiasi is proposing in ghiasi_3ck_adhoc_01_102418.pdf
- Still part of an end to end FEC budget, similar to a C2M interface
- C2C-L (long), same/similar loss as the KR interface
- Separate FEC domain compared to any other part of the link
- Introduces segmented FEC

I will use the -S and -L designations for now later in this presentation to differentiate these

## Possible New 100G FEC Sublayer

- Based on $2 \times 50 \mathrm{G}$ RS $(544,514)$ FEC interleaving



## Latency for the 100G Interleaved FEC Sublayer

| Current Clause 91 RS544 |  |
| :--- | :--- |
| Latency | Contributor |
| 51 ns | Block time |
| $50-100 \mathrm{~ns}$ | Processing* |
| $101-151 \mathrm{~ns}$ | Total |
|  |  |
| Potential RS544 Interleaved |  |
| Latency | Contributor |
| 102 ns | Block time |
| $50-150 \mathrm{~ns}$ | Processing* |
| $152-252 \mathrm{~ns}$ | Total |


*depends on parallelism/latency tradeoffs

## Architectural View



100GBASE-DR
100GAUI-1 C2M I/F


100GBASE-KR
100GBASE-CR

## Interleaved Protocol Stack Comparison with CL91

CL91 TX Stack


## Interleaved Protocol Stack Comparison with 802.3bs



## PMA for New FEC Sublayer

》 PMA can be used as a pass through ( $2 \times 53 \mathrm{G}$ )
> Or to bit mux down to a single lane ( $1 \times 106 \mathrm{G}$ )
© Simple bit muxing


## Alignment Markers

. Existing Clause 82/91 Marker Format

| FEC lane, $i$ | Reed-Solomon symbol index, $k$ (10-bit symbols) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 12 | 3 | 4 | 56 | 7 | 8 | 910111 | 12 |  | $14\|15\| 16\|17\|$ | 1819 | 1920 | 20\|21|22|23|2 | $24 \mid 25$ |  | 2728 | \|29|30 |  | 32/33 |
| 0 | amp_tx_0 |  |  |  | $630$ |  | amp_tx_4 |  | 63 | 0 amp_tx_8 ${ }_{6}$ |  |  | $530$ | amp_tx_12 | $630$ |  | amp_tx_16 |  |  |  |
| 1 | amp_tx_1 |  |  |  | 630 |  | amp_tx_5 |  | 630 | amp_tx_9 |  | 630 |  | amp_tx_13 | 630 |  | amp_tx_17 |  |  |  |
| 2 | amp_tx_2 |  |  |  | 630 |  | amp_tx_6 |  | 630 | amp_tx_10 |  | 630 |  | amp_tx_14 | ${ }_{63}{ }^{1}$ |  | amp_tx_18 |  |  | ¢ |
| 3 |  | amp_tx_3 |  |  |  |  | amp_tx_7 |  |  |  | $\text { amp_tx_11 } 6310$ |  |  | amp_tx_15 | $630$ |  | amp_tx_19 ${ }_{63}$ |  |  |  |

$=5$-bit pad
tx_scrambled
Figure 91-4-Alignment marker mapping to FEC lanes

》 Proposed New Interleaved Marker Format (supporting two FEC lanes)

- amp_tx_0 = am0, amp_tx_1 = am0, amp_tx2 = am2 etc.
- No repetition at the end of the AM block



## 100GbE Example Use Cases - Optical

Seamless Clause 91 FEC end to end, backwards compatible


Retimer to 100G AUI-1, backwards compatible


Retimer/mux to 100G AUI-1, backwards compatible


Page 14

## 100GbE Example Use Cases - Copper



Retimer in the path for CR


## 100GbE Example Use Cases - Needs More Work

》 There is a separate effort to specify some sort of XS that might be usable for this scenario
"Retimer" converts from Interleaved FEC to Clause 91 FEC


How to do this from a protocol stack point of view???


## More Work to be Done

> Look in detail at how to handle C2C interfaces, with bigger questions open around what does the C2C I/F look like from a loss point of view

- Do we have two C2C interfaces, a short and a long?
- Each with different implications on the FEC budget/partitioning?
- Agree to a model for DFE on a C2M, and run sims to see the performance
- If DFE will be used for C2M


## Conclusion

》 This presentation shows a possible interleaved FEC sublayer for the harder 100 GbE single lane channels

Thanks!

