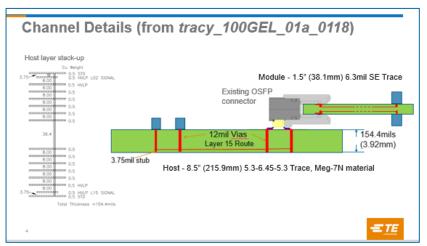
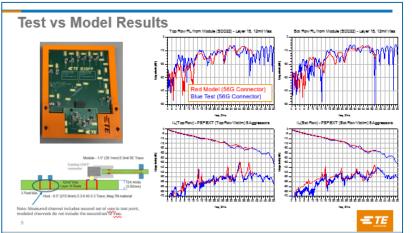


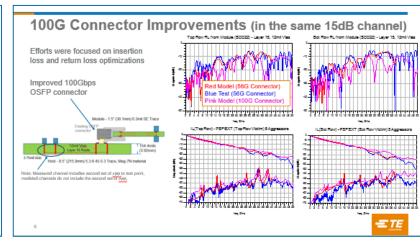
Chip to Module and Direct Attach Cable Channel Analysis

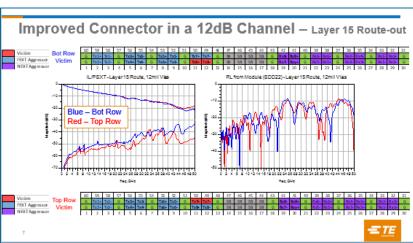
Nathan Tracy, Bruce Champion, Arturo Pachon

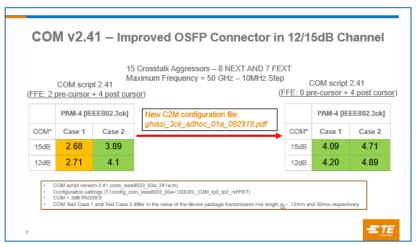
November 13, 2018

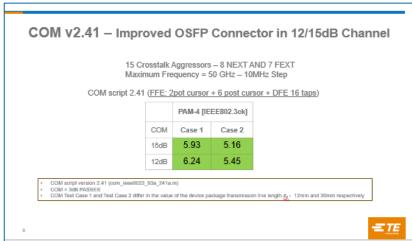


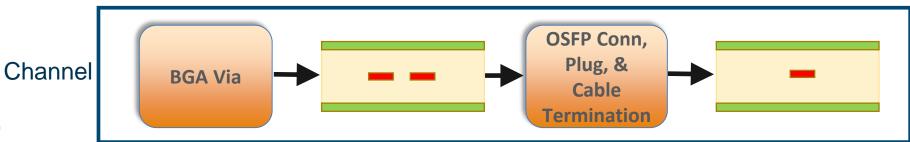

Objective: Provide Further Analysis on Chip to Module and Direct Attach Cable Channels


- At the September Interim meeting tracy_3ck_01a_0918.pdf provided 12dB and 15dB host board channel analysis
- This presentation provides the requested analysis for a 16dB host board channel (chip to module), and provides analysis of a direct attach cable (DAC) channel and considers the DAC with a host channel.
- 100 Ω and 90 Ω trace impedances are also considered.



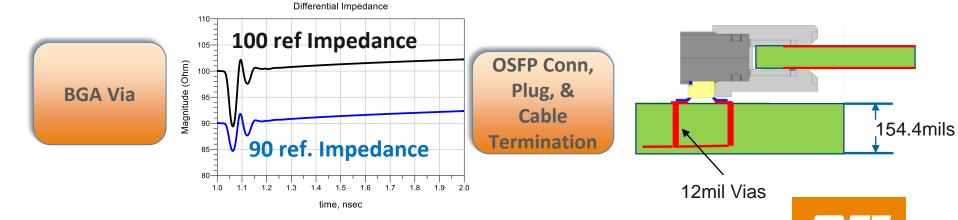

Review of tracy_3ck_01a_0918



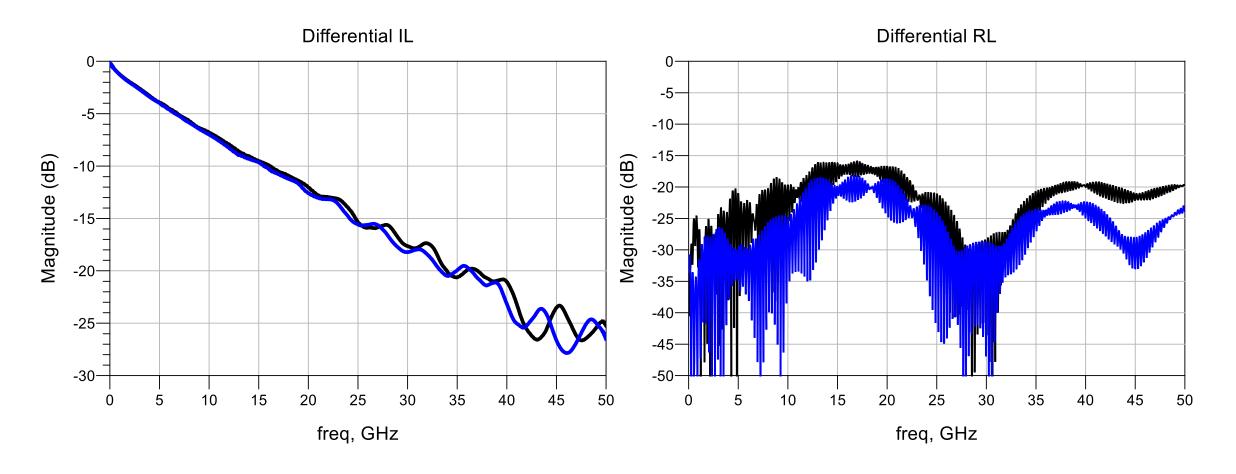

September meeting requested that a 16 dB channel be included

Chip to Module Channel (C2M) Simulation

New Analysis: 16dB Chip to Module Channel Created


Host layer stack-up

	Cu	Wei	ight		
3.75	7	0.5 0.5	STD HVLP	L02	SIGNAL
8.00	<i></i>	0.5	HVLP		
8.00	77	0.5			
8.00		0.5			
8.00		0.5			
8.00		0.5			
36.4		0.5			
8.00		0.5			
8.00		0.5			
8.00		0.5			
8.00		0.5			
			HVLP		
3.75		0.5		L15	SIGNAL


Total	Thickness	=154 4mils

Ref Ω	Host Loss @ 26.56GHz
100 ref Ω	-12.34
90 ref Ω	-12.78

Ref Ω	Module Loss @ 26.56GHz	
100 ref Ω	-1.514	
90 ref Ω	-1.465	

16dB C2M Channel: 100 and 90 ref. impedance comparison

COM v2.41 – C2M OSFP Connector in 16dB Channel

15 Crosstalk Aggressors – 8 NEXT AND 7 FEXT Maximum Frequency = 50 GHz – 10MHz Step

COM script 2.41

(FFE: 2 pre-cursor + 4 post cursor + 1 DFE)

	PAM-4 [IEEE802.3ck]		
COM*	Case 1	Case 2	
100 ohm 16dB	3.96	4.78	
90 ohm 16dB	3.61	4.46	

- COM script version 2.41 (com_ieee8023_93a_241a.m)
- Configuration settings (T1config_com_ieee8023_93a=100GEL_C2M_tp0_tp2_rxFFE7) adjusted to include 1 DFE
- COM > 3dB PASSES
- COM Test Case 1 and Test Case 2 differ in the value of the device package transmission line length z_p 12mm and 30mm respectively

COM v2.41 – C2M OSFP Connector in 12/15/16dB Channel

15 Crosstalk Aggressors – 8 NEXT AND 7 FEXT Maximum Frequency = 50 GHz – 10MHz Step

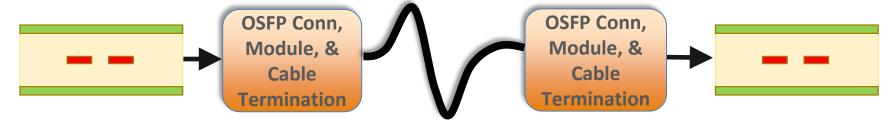
COM script 2.41

(FFE: 2 pre-cursor + 4 post cursor + 1 DFE)

	PAM-4 [IEEE802.3ck]		
COM*	Case 1	Case 2	
100 ohm 16dB	3.96	4.78	
100 ohm 15dB	3.81	4.86	
100 ohm 12dB	4.08	4.91	

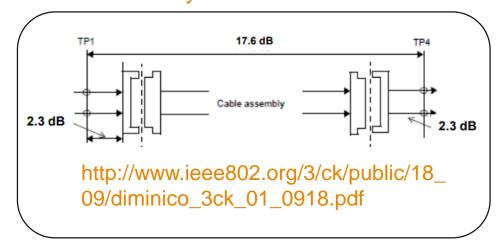
- COM script version 2.41 (com_ieee8023_93a_241a.m)
- Configuration settings (T1config_com_ieee8023_93a=100GEL_C2M_tp0_tp2_rxFFE7) adjusted to include 1 DFE
- COM > 3dB PASSES
- COM Test Case 1 and Test Case 2 differ in the value of the device package transmission line length z_p 12mm and 30mm respectively

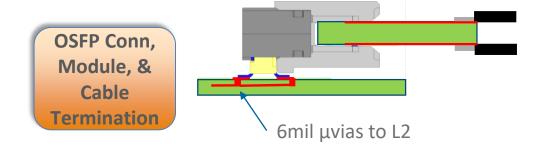
Cable Assembly Channel (CR) Simulation



17.6dB Cable assembly (TP1-TP4) - description

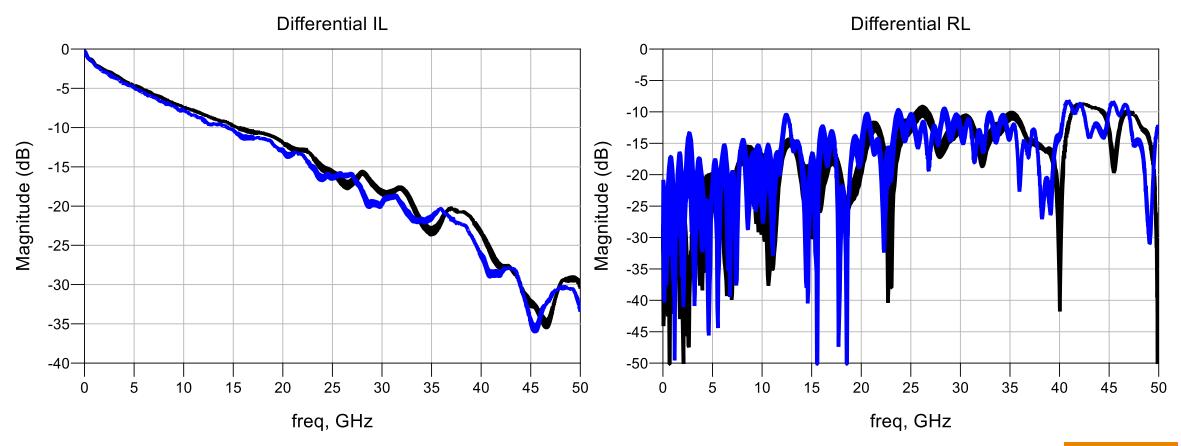
-2.3@26.56GHz - 100 ref. Impedance


-2.3@26.56GHz - 90 ref. Impedance


-2.3@26.56GHz – 100 ref. Impedance -2.3@26.56GHz – 90 ref. Impedance

2.0m 26 AWG Twinax Cable (100 Ohm and 90 Ohm)

Cable assembly and Channel IL - Baseline



17.6dB CR Channel comparison: 100 Ohm and 90 Ohm

Nominal simulation design hits 17.7dB @26.56GHz – There is no margin included in the simulation for manufacturing tolerances (cable/connector/PCB) which will impact IL variation

COM v2.51 - CR OSFP Conn in 17.6dB Channel

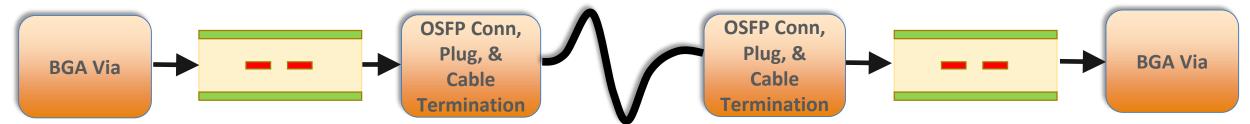
15 Crosstalk Aggressors – 8 NEXT AND 7 FEXT Maximum Frequency = 50 GHz – 10MHz Step

COM script 2.51 (FFE: 24 DFE)

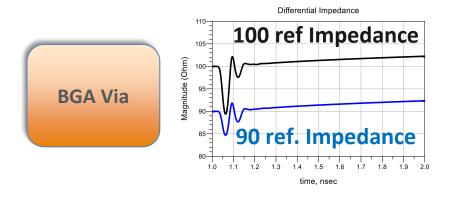
	PAM-4 [IEEE802.3ck]		
COM*	Case 1	Case 2	
CR – OSFP 100 ohm	5.89	4.85	
CR – OSFP 90 ohm	5.02	4.66	

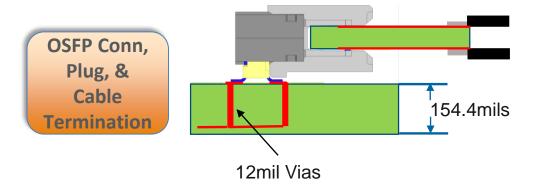
- COM script version 2.51 (com_ieee8023_93a_251a.m)
- Configuration settings (config_com_ieee8023_93a=100GEL-CR_DFE_100118)
- COM > 3dB PASSES
- COM Test Case 1 and Test Case 2 differ in the value of the device package transmission line length z_p 12mm and 30mm respectively

Host + Cable Assembly Channel Simulation


28dB Host/DAC Channel (TP0-TP5) - description

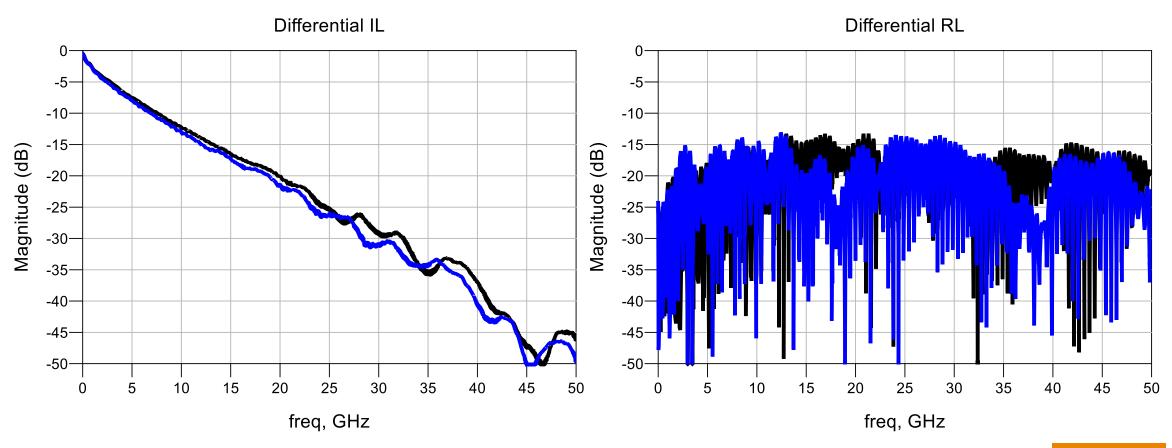
-6.54dB@26.56GHz - 100 ref. Impedance


-6.76dB@26.56GHz - 90 ref. Impedance


-6.54dB@26.56GHz - 100 ref. Impedance

-6.76dB@26.56GHz - 90 ref. Impedance

2.0m 26 AWG Twinax Cable (100 Ohm and 90 Ohm)



28.0dB CR Channel comparison: 100 Ohm and 90 Ohm

Nominal simulation design hits 28dB @26.56GHz – There is no margin included in the simulation for manufacturing tolerances (cable/connector/PCB) which will impact IL variation

COM 2.51: 28db Direct Attach Cable on a Host

15 Crosstalk Aggressors – 8 NEXT AND 7 FEXT Maximum Frequency = 50 GHz – 10MHz Step

COM script 2.51

(FFE: 24 DFE)

	PAM-4 [IEEE802.3ck]		
COM*	Case 1	Case 2	
28dB DAC - OSFP 100 ohm	5.44	4.61	
28dB DAC – OSFP 90 ohm	5.09	4.04	

- COM script version 2.51 (com_ieee8023_93a_251a.m)
- Configuration settings (config_com_ieee8023_93a=100GEL-CR_DFE_100118)
- COM > 3dB PASSES
- COM Test Case 1 and Test Case 2 differ in the value of the device package transmission line length z_p 12mm and 30mm respectively

Host PCB was not included in the spreadsheet, since it is already included in the simulation

Summary

- 16dB Chip to Module channel has been modeled with both 100 and 90 Ω reference impedances traces
 - Promising results shown using COM 2.41
 - 100 Ω reference impedance provides better COM result by about ~0.3dB
- 17.6dB Direct Attach Copper cable channel simulated with both 100 and 90 Ω reference impedance traces/cable/connector (CR)
 - 100 Ω reference impedance provides better COM result by about ~0.8dB (Case1=12mm) and ~0.2dB (Case2=30mm)
 - Reported numbers are based on nominal Connector/Cable/PCB simulation design. Cable, connector and PCB manufacturing deviation is not considered in this study

Summary - 2

- 100/90Ω Thick Host + DAC + Thick Host
 - 100 Ω ref provides better COM result by about ~0.35dB, Case 1 & ~0.6dB, Case 2
 - MCBs are normally constructed on thin stack-ups so that via loss is not included (microstrip trace is sometimes uses)
 - The IL budget on Thick Host + Cable Assembly + Thick Host Channel should account for the 4 via/stub losses (2xBGA Via + 2x Connector Via, ~0.5dB/via at 28GHz)
 - Current IL budget does not account for these losses
 - Reported numbers are based on nominal Connector/Cable/PCB simulation design. Any cable, connector, and PCB manufacturing deviation is not considered in this study
 - Considering current proposed budgets/allocations and simulations, a budget higher than 28dB is likely to be required for cable assembly channels (2m)
- 100 Ω provides the best performance
 - Improved impedance match from 90 Ω reference is overcome by higher losses

