Module stressed input loss calibration and other loss curves P802.3ck D3.0 comments 202 216 218 223

Piers Dawe, Nvidia January 2022

Calibrating the components outlined in red

Figure 120G-10—Example module stressed input test

 Loss is calibrated from the output of the pattern generator to TP1a

- $ILdd(f) = 1.54\sqrt{f} + 0.3865f$ (120G-3)
- In spite of the figure title, this is not the frequency-dependent attenuator alone

D3.0

- The mated compliance boards target the blue line
 - $ILddMTFref(f) = 0.942(0.471√f + 0.1194f + 0.002*f^{2}) Eq 162B-5$
 - 6.6036 dB at Nyquist
- So the frequency-dependent attenuator must target the red line which bends too much the wrong way (*f*^2 term with wrong sign)
- Impractical, and not representative of the host-to-module channel and the channels used for module output compliance Module stressed input loss calibration and other loss curves

- Black: total
 - $1.42461\sqrt{f} + 0.358718f + 0.001884*f^{2}$ 18.2 dB at Nyquist
- More practical and representative of the host-to-module channel, but... https://ieee802.org/3/ck/public/21_11/dawe_3ck_01a_1121.pdf

802.3ck Jan 2022

Module stressed input loss calibration and other loss curves

Comparing November proposal to D3.0

 Green line is better than black line, except not bowed enough at lower frequencies

Comment 218 Real compliance boards

- We don't expect that compliance board traces will get shorter
 - Possibly the opposite as we go from 4 to 8 to maybe 16-wide modules
- But they might use better dielectric, and tolerancing and detailed improvements
- So the low frequency loss will improve less than the high frequency loss
 <u>https://ieee802.org/3/ck/public/19_07/kocsis_3ck_01_0719.pdf</u>

802.3ck Jan 2022

Module stressed input loss calibration and other loss curves

Associated changes

- Max/min mated compliance board limits?
 - No change, see next slide
- For 120G.3.4.3.2 Module stressed input test calibration, high-loss signal calibration *Comment 202*
 - Change L from 464 to 295.6 mm
 - Replace Eq 120G-3 with two equations:
 - Frequency-dependent attenuator $0.981\sqrt{f} + 0.2463f$
 - The loss of the combination is $1.7962 \sqrt{f} + 0.2463f + 0.003405f^2$
 - Show all three curves (Eq 162B-5 mated compliance boards, frequencydependent attenuator and the combination) in Figure 120G-11. Revise its title
- Slightly reduce R_{peak} (0.397 in D3.0 Table 162-10)
- In 162A.4 Transmitter and receiver differential printed circuit board (PCB) trace differential-mode to differential-mode insertion loss,
 - review the recommended maximum insertion loss from TP0 to TP2 or from TP3 to TP5 including the test fixture, Equation (162A-3) and Figure 162A-2
 - the \sqrt{f} term may be too small
 - but this is only a recommendation

Comment 218 on compliance boards, summary

- Change equation 162B-5 from:
- $ILdd_{MTFref}(f) = 0.942(0.471\sqrt{f}) + 0.1194f + 0.002f^2)$ to:
- $ILdd_{MTFref}(f) = 0.8153\sqrt{f} + 0.003405f^2$
- Update Figure 162B-3, Mated test fixtures differential-mode to differential-mode insertion loss

Comment 223 Figure 163B-1 doesn't match Equation 163B-1

Figure 163B-1—Example test fixture differential-mode to differential-mode insertion loss

- D3.0 Eq 163B-1 $IIdd(f) = 0.074 + 0.2104\sqrt{f} + 0.0674f$ $0.05 \le f \le 53.125$
- I believe the graph is right, and the right coefficients are 0, 0.235616, 0.059147
- Change to: $IIdd(f) = 0.235616\sqrt{f} + 0.059147f$ $0.05 \le f \le 53.125$

Comment 216

- Please make it easier for the reader to judge the size of these losses
- Also, it's test fixture reference ... loss as in the text, not reference test fixture ... loss
- Please put *ILddcatf* on Figure 162B-1, and label the two lines (e.g. make one dashed), change figure title to "reference differentialmode to differential-mode insertion losses of test fixtures", refer to it from 162B.3, delete Figure 162B-2

Combined figures 162B-1 and 162B-2

