Residual intersymbol interference

(comment R1-28)

Adam Healey Broadcom Inc. April 2022 (r1)

Introduction

- Residual intersymbol interference (ISI) in the transmitter output waveform is constrained by the ISI_RES specification
- Per 163.9.2.6, ISI_RES related to the linear fit error computed for a linear fit pulse length $N_p = 11$
- Signal-to-noise-and-distortion ratio (SNDR) includes a linear fit error term computed using $N_{p} = 200$
- This term is primarily associated with distortion ($N_{\rho} = 200$ was chosen to reduce the influence of residual ISI on SNDR)
- ISI_RES therefore combines residual ISI and distortion
- The model used determine the ISI_RES limit (see <u>dudek_3ck_01_0721</u>) was linear hence the SNDR linear fit error term was likely close to 0

Problem statement #1

- ISI_RES combines residual ISI and distortion
- Since SNDR controls distortion, this is double-counting
- ISI_RES limit was derived for transmitters whose SNDR was dominated by uncorrelated noise

Parameter	Case 1	Case 2	Case 3
RMS uncorrelated noise	2.37%	1.5%	0%
RMS linear fit error for $N_p = 200$	0%	1.84%	2.37%
RMS residual ISI	2.82%	2.82%	2.82%
RMS linear fit error for $N_p = 11$	2.82%	3.37%	3.68%
SNDR, dB	32.5	32.5	32.5
ISI_RES, dB	-31	-29.5	-28.7

ISI_RES limit violated despite having an "acceptable" level of residual ISI

Problem statement #2

- ISI_RES is measured with $N_p = 11$ and $D_p = 4$ so it includes all errors after post-cursor 6
- A dispersive channel (package, host, test fixture) can generate an ISI tail that extends beyond post-cursor 6
- A receiver can generally be expected to deal with such a tail reflections are the primary concern
- ISI_RES degraded by inconsequential ISI
- Transmitter equalization has been suggested as a means to reduce the impact of the tail (see <u>ran_3ck_adhoc_01_032322</u>)
- A low-frequency pole/zero pair is a more efficient tool for tail reduction

Inconsistency

- Effective return loss (ERL) considers the alignment of reflections at the sampling point
- ERL uses the sampling phase that maximizes the error
- In contrast, ISI_RES combines all residual errors irrespective of phase
- It would be better for reflections to be treated consistently between ERL and ISI_RES

Proposed solution

- Replace ISI_RES with SNR_ISI as defined in 120D.3.1.7 except ...
- ... use the continuous time filter parameters in Table 163–11 and ...
- ... for calculation of $ISI_{cursors}$, sweep phase ±0.5 UI around t_p and choose the phase that minimizes SNR_ISI
- SNR_ISI does not include SNDR linear fit error
- SNR_ISI includes a reference equalizer to reduce the dispersive tail and focus on reflections
- SNR_ISI accounts for the alignment of reflections at the sampling point (similar to ERL)
- SNR_ISI is already part of the base standard there is no need to add a new residual ISI metric

Correlation of SNR_ISI to ISI_RES at TP0v

- 18 transmitter models from slide 9 of <u>dudek_3ck_01_0721</u>
- 4 dB test fixture
- $N_b = 6$ (agrees with $N_p = 11$)
- Assume transmitters that meet the ISI_RES requirement also yield acceptable COM (and vice versa)

What if $N_b = 12$? (TP0v results)

IEEE P802.3ck Task Force, April 2022 (r1)

Correlation of SNR_ISI to ISI_RES at TP2

- 18 transmitter models from slide 9 of <u>dudek_3ck_01_0721</u>
- Different host models
- $N_b = 6$ (agrees with $N_p = 11$)

What if $N_b = 12$? (TP2 results)

Proposed limits

- Set N_b to 6
- For Clause 163 and Annex 120F, set SNR_ISI (min.) to 28 dB
- For Clause 162, set SNR_ISI (min.) to 26.7 dB
- Requirements need only be met for one transmitter equalizer setting e.g., the one that maximizes SNR_ISI