100GE AUI Extender Sublayer

Yuchun Lu, Huawei
Yan Zhuang, Huawei

Introduction

- FEC performance concern for 100GE-CR1/KR1 multi-tap DFEs with 4:1 bitmux PMA was shown and interleaved FEC was proposed in gustlin 3ck 011118.
- Interleaved FEC will introduce more latency and complicated CDR is needed to address the interoperability and compatibility issues. Both the latency and the complicated CDR are not affordable in some applications. In-depth analysis was given lu 3ck adhoc 01022719.
- Further, analysis of potential solutions for 100G-CR1/KR1 multi-tap DFE error propagation was given in lu 3ck 020319 including PMD, PMA and FEC sublayer solutions.
- This presentation looks into the PMA solution, which introduces a new optional AUI Extender Sublayer to implement the PMA remapping to resolve the FEC performance concern of "multi-tap DFEs with 4:1 bitmux PMA" with negligible cost (both in latency and circuit) and negligible impact on the standard and system. It can simplify the CDR and support "protocol independent CDR".

1-tap DFE does not have FEC performance concern

[^0]healey 100GEL 010318

1. Pre-coding should be used in $100 \mathrm{~Gb} / \mathrm{s}$ per lane electrical PHYs as a tool to improve error correction performance. See healey 100GEL 01 0318, zhang 3ck 01a 0918, lu 3ck 010319.
2. 1-tap DFE does not have FEC performance concern if pre-coding is applied, even with the worst case DFE weight $\mathrm{t} 1=1.0$ or error propagation probability $\mathrm{a}=0.75$.
3. 1-tap DFE is a special case of n-tap DFE, and n tap DFE can be viewed as an equivalent 1-tap DFE with time variant DFE weight. If DFE weights are well constrained, the FEC performance concern of n-tap DFE receiver can be mitigated. (More details see lu 3ck adhoc 01a 010219)

The FEC concern only happens for extreme settings (maybe too pessimistic and un-realistic) of minority multi-tap DFE receiver.

Constraining DFE weights can relief FEC performance concern

- [0.8 $0.2-0.050 .05]$ is a reasonable DFE weight setting close to the real worst case, bmax=[0.7, 0.2] was used in IEEE 802.3bj\&cd. No significant improvement ($<0.2 \mathrm{~dB}$) was observed by "interleaved FEC" in this case.
- Relaxing "bmax" to [0.85, 0.35] is under discussion (wu_3ck_adhoc_01_022719), however the COM benefit by increasing $\operatorname{bmax}(1)$ from 0.7 to 0.85 is $<0.25 \mathrm{~dB}$ when $\operatorname{bmax}(2 \ldots \mathrm{Nb})=0.35$; and $<0.1 \mathrm{~dB}$ when $\mathrm{bmax}(2 \ldots \mathrm{Nb})=0.2$.
- "Increasing bmax(1) to 0.85 " only makes sense when the FEC performance penalty is negligible.

Constraining DFE weights make the whole work reasonable

- The benefits of increasing $\operatorname{bmax}(1)$ from 0.7 to 0.85 is minor.
- $<0.25 \mathrm{~dB}$ for $\operatorname{bmax}(2)=0.35 ;<0.1 \mathrm{~dB}$ for $\operatorname{bmax}(2)=0.2$.
- If the penalty of increasing bmax(1) from 0.7 to 0.85 is not negligible. Bmax=[0.7 0.2] will be a better choice, because we did not have any FEC performance concern in IEEE 802.3bj\&cd, i.e. "50G CR-2/KR-2"; "25G CR-1/KR-1", "50G CR-1/KR-1" and "100G CR-2/KR-2", in which "Symbol mapping" or "2:1 Bit mux PMA" was adopted.
- Constraining DFE weights is reasonable. There will be a concern if COM gain $<0.25 \mathrm{~dB}$ while FEC performance penalty $>0.25 \mathrm{~dB}$ due to the DFE error propagation.

Symbol mapping can address the FEC performance concern

25G CR-1/KR-1: direct
codeword/symbol mapping. RS(528, 514$)+1: 1$ bit mux.

2. "Symbol mapping PMA" can definitely solve the FEC performance concern for 100G CR-1/KR-1 which was approved by previous projects (802.3bj\&802.3cd).

1 FEC + 1:1 bit mux (symbol mapping)

\approx 2-way interleaved FEC + 2:1 bit mux.

1. "Non-Interleaved FEC + Symbol Mapping PMA" has the same performance as 50 G CR-2/KR-2 and is better than "25G CR-1/KR-1", "50G CR-1/KR-1", and "100G CR-2/KR-2".

Symbol mapping can address the FEC performance concern

May need some reasonable constrains on DFE weights for multi-tap DFE receivers.

- Relationship between reducing ' n ' in ' $n: 1$ bit mux' and increasing ' m ' in ' m-way interleaved FEC' can be observed.
- "1 FEC + 2:1 bit mux (2:1 precode)" has identical performance compared with "2-way interleaved FEC + 4:1 bit mux (4:1+CI(2)+precode)".
- With the n-tap DFE weight well controlled, and precoding turned on, we can find the following equivalent configurations:

1 FEC + 1:1 bit mux (symbol mapping)

2-way interleaved FEC + 2:1 bit mux. gustlin_3ck_01_1118

Symbol mapping can address the FEC performance concern

lyubomirsky_3ck_01a_0319 page 9.

Channel	Equivalent 1-tap DFE weight	"SNR" penalty (dB)
[1 1] (Reference)	1	0
$\left[\begin{array}{lllllll}1 & 0.7 & 0 & 0.20 & 0 & 0.2\end{array}\right]$	1.1	0.65
$\left[\begin{array}{lllllllll}1 & 0.7 & 0 & 0.20 & 0 & 0.1\end{array}\right]$	1.0	<0.2
	0.95	<0.1
$\left[\begin{array}{llllllll}1 & 0.7 & 0 & 0.10 & 0 & 0.1\end{array}\right]$	0.9	<0.05

- Changing DFE weights from
[10.700.200.1] (equivalent DFE weight =1.0) to
[10.700.200.2] (equivalent DFE weight = 1.1) contributes $>0.4 \mathrm{~dB}$ of the SNR penalty.
- As long as equivalent DFE weight is constrained to be $<=1.0$ (DFE error propagation probability <0.75), the SNR penalty for "symbol mux" is minor.
- The Equivalent 1 -tap DFE weight is <0.8, even with bmax $=[0.85,0.35]$ constrain (wu_3ck 01b 0319 page 21).
- Equivalent 1-tap DFE weight for multi-tap DFE was defined in lu_3ck_adhoc 01a_010219.

How to introduce "Symbol Mapping"

MAC was always preserved

Don't touch the PCS/FEC.

Reserved the PMA for C2M.
Proposed a new optional symbol remapping function for PMA sublayer only for the difficult channels of 100G CR1/KR1.

Defined by new IEEE 802.3 Task Forces.

Optional 100GE AUI Extender Sublayer

(a) Host

- Introduce a new optional AUI Extender Sublayer (XS) to extend the definition of AUI interface.
- AUI XS achieves PMA remapping function when necessary.
- The FEC performance concern can be resolved by reversing 4:1 bitmux and using symbol mapping for distribution.
- No latency or complicated CDR will be introduced.
$Z=1, T=4$ for 100GE CR-1/KR-1 $\mathrm{W}=4,2,1$.

- It can also support "FEC recovery" if needed.

Proposed 100GE AUI Extender Sublayer architectural view

100GBASE-DR/KR/CR, C2M/C2C Interface.

Reserve the 100GE PCS FEC. No interoperability and compatibility issue.

Bitmux PMA architecture is also reserved. AUI XS is a shim layer within PMA sublayer. Map 4 FEC lanes to 1 FEC lane.

1. Can be stacked in Host ASIC.
2. Should be optional and only work for the most difficult channels at 100GE-
CR1/KR1. Just like "Precoding".
Bitmux PMA is not necessary for 1 PMD lane cases, because there are no "Skew" or "Out-of-order" issues.

Proposed 100GE AUI Extender Sublayer detailed view

1. No need to implement in Host ASIC. Collapses with PCS and PMA for collocated Sublayers.
2. The "red blocks" are for the "Bit mux PMA", not needed for "Symbol mux PMA".
3. Only $2: 1$ selectors are needed to support dual model. No latency will be introduced.

Proposed 100GE AUI Extender Sublayer detailed view

1. Small cost of implementation in module. Negligible cost if compared with interleaved FEC scheme. No latency will be introduced if "FEC recovery" is turned off.
2. The complexity comes from the support of "Bit mux PMA", i.e. the "red blocks".
3. No need to implement the "red blocks" for symbol mapping PMA or "protocol independent CDR".

Protocol stack comparison with current 100GE

Symbol mapping relationships

"Keep all the FECLs in order and use 4:1 symbol mux." is equivalent to direct "symbol mapping" from the FEC codeword to the 1 PMD lane.

FEC self-synchronization and Alignment Markers

- No new Alignment Markers (AM) are needed to be defined. Two ways to achieve alignment

1. The RS $(544,514)$ can be self-synchronized.
2. Reuse the remapped alignment markers of Clause 91.

4096 FEC Remapped CL91 AMs aligned with

The CL91 Alignment Markers are aligned with RS $(544,514)$ FEC boundary. As long as the FEC boundary is founded by the self-synchronization algorithm, the FECLs can be easily recovered.

FEC self-synchronization and Alignment Markers

- No new Alignment Markers (AM) are needed to be defined. Two ways to achieve alignment

1. The RS $(544,514)$ can be self-synchronized.
2. Reuse the remapped alignment markers of Clause 91.

Table 82-2-100GBASE-R Alignment marker encodings
amp_tx_x $=\left\{M_{0}, M_{1}, M_{2}, B I P_{3}, M_{4}, M_{5}, M_{6}, B I P_{7}\right\}$

Figure 91-4—Alignment marker mapping to FEC lanes

An example of 80 bits remapped $A M$ is
amp_tx_0\{ 9: 0\}, amp_tx_1\{ 9: 0\}, amp_tx_2\{ 9: 0\}, amp_tx_3\{ 9: 0\}, amp_tx_0\{19:10\}, amp_tx_1\{19:10\}, amp_tx_2\{19:10\}, amp_tx_3\{19:10\}. These bits are aligned with RS $(544,514)$ FEC codeword and repeat every 4096 FEC code words.

More bits are available for alignment except for the BIP bits.

$\begin{gathered} \text { PCS } \\ \text { lane } \\ \text { number } \end{gathered}$	$\underset{\left\{\mathbf{M}_{0}, \mathbf{M}_{1}, \mathbf{M}_{2}, \text { BIP }_{3}, \mathbf{M}_{4}, \mathbf{M}_{5}, \mathbf{M}_{6}, \text { BIP }_{7}\right\}}{\text { Encodin }}$				$\begin{gathered} \text { PCS } \\ \text { lane } \\ \text { number } \end{gathered}$	$\underset{\left\{\mathbf{M}_{0}, \mathbf{M}_{1}, \mathbf{M}_{2}, \text { BIP }_{3}, \mathbf{M}_{4}, \mathbf{M}_{5}, \mathbf{M}_{6}, \text { BIP }_{7}\right\}}{\text { Encoding }^{\mathbf{a}}}$			
0	$0 \mathrm{xC} 1,0 \mathrm{x} 68,0 \mathrm{z}$	$21, \mathrm{BIP}_{3},$	$\text { x } 3 \mathrm{E}, 0 \mathrm{x} 97,0 \mathrm{xI}$	E, BIP $_{7}$	10	0xFD, 0x6C,	x99, BIP_{3}	0x02, 0x93, 02	$66, \mathrm{BIP}_{7}$
1	0x9D, 0x71, 0	88, BIP_{3},	0x62, 0x8E, $0 \times$	71, BIP_{7}	11	0xB9, 0x91, 0	555, BIP_{3},	0x46, 0x6E, 0x	AA, BIP_{7}
2	0x59, 0x4B, 0	EE8, BIP_{3},	0xA6, 0xB4, 0	17, BIP_{7}	12	0x5C, 0x B9,	xB2, BIP	0xA3, 0x46,	x4D, BIP_{7}
3	0x4D, 0x95, 0	87B, BIP_{3},	0xB2, 0x6A, 0	884, BIP_{7}	13	0x1A, 0xF8, 0	xBD, BIP	0xE5, 0x07, 0	42, BIP_{7}
4	0xF5, 0x07, 0	09, BIP_{3},	Dx0A, 0xF8, 0x	${ }^{\text {F6, }}$, BIP_{7}	14	0x83, 0xC7, 0	CA, BIP_{3}	0x7C, 0x38, 0	335, BIP_{7}
5	0xDD, 0x14,	xC2, BIP_{3}	0x22, 0xEB, 0	O $3 \mathrm{D}, \mathrm{BIP}_{7}$	15	0x35, 0x 36,0	CD, BIP_{3}	0xCA, 0xC9,	$\times 32, \mathrm{BIP}_{7}$
6	0x9A, 0x4A,	x26, BIP_{3}	0x65, 0xB5, 0	D9, BIP_{7}	16	0xC4, 0x31, 0	$54 \mathrm{C}, \mathrm{BIP}_{3}$	0x3B, 0xCE, 0	EB3, BIP_{7}
7	0x7B, 0x45, 0	:66, BIP_{3},	0x84, 0xBA, 0	99, BIP_{7}	17	0xAD, 0xD6,	pxB7, BIP	0x52, 0x29, 0	¢ $48, \mathrm{BIP}_{7}$
8	0xA0, 0x24, 0	876, BIP_{3},	0x5F, 0xDB, 0	89, BIP_{7}	18	0x5F, 0x66, 0,	2A, BIP_{3},	0xA0, 0x99, 02	$\mathrm{D}_{5}, \mathrm{BIP}_{7}$
9	0x68, 0xC9, 0	FB, BIP_{3}.	0x97, 0x36, 0x	O4, BIP_{7}	19	0xC0, 0xF0, 0	¢E5, BIP_{3}.	0x3F, 0x0F, 0x	A, BIP_{7}

[^1]
Scenarios of "Symbol Mapping PMA"

1. New chip can talk to new chip with "symbol mapping PMA" and "bit mux PMA".
2. New chip can talk to legacy chip with "bit mux PMA".
3. Host IC can support dual modes, i.e. "symbol mapping PMA" and "bit mux PMA" with negligible cost.
4. CDR chips can achieve the "Symbol mapping PMA" and "Bit mux PMA" conversion, i.e PMA-remapping with affordable cost. The complexity mainly comes from "Bit mux PMA".
5. Only simplex PMA-remapping is required. Even though the "host side" and "line side" Serdes are different, circuits can be shared.

"Symbol mapping" vs. "2-way interleaved FEC+2:1 bit mux"

\#		"Symbol mapping PMA" (similar to 25GE)	```"2-way interleaved FEC + 2:1 bit mux" (gustlin_3ck_01_0119)```
Performance		Same ("Symbol mapping PMA" may need some reasonable constrain in DFE weights).	
Complexity	Host IC	160~320 "2:1 selector"	160~320 " $2: 1$ selector" 2x 50G RS $(544,514)$ Encoder/Decoder.
	CDR	1x FECL processing (PMA Gearbox, Alignment lock, deskew, lane reorder), not needed for "symbol mapping PMA". $2 x$ 100G RS $(544,514)$ Decoder, not needed w/o "FEC recovery" support. All the above functions are optional and can be by-passed.	2x FECL processing (PMA Gearbox, Alignment lock, deskew, lane reorder) 2x 50G RS $(544,514)$ Encoder/Decoder. 1x 100G RS $(544,514)$ Encoder/Decoder. All the above functions are mandatory.
Latency Increase	Host IC	0	>50ns
	CDR	Ons w/o "FEC recovery" support; ~100ns w/ FEC recovery support.	>150ns 1 CDR; >250ns 2 CDR.
Protocol independent CDR support		Yes, FEC can be self-synchronized, no need to identify the AMs.	No, need to process the PCS to support "FEC Recovery".
Newly defined Alignment Markers		No	Yes

Symbol mapping PMA

Summary

This presentation shows a possible PMA Sublayer solution to mitigate the FEC performance concern of difficult 100GECR1/KR1 channels.

No mandatory new feature is needed. No latency and complicated CDR will be introduced. "Protocol independent CDR" with "FEC recovery" is supported.

Thank you！

把数字世界带入每个人，每个家庭，每个组织，构建万物互联的智能世界。

Bring digital to every person，home，and organization for a fully connected， intelligent world．

[^0]: anslow 3ck 010119 page 5,

[^1]: ${ }^{\text {a }}$ Each octet is transmitted LSB to MSB

