CTLE for the C2M reference receiver (supporting comment 127)

Adee Ran, Cisco

April 2021

Outline

- Examine the reference CTLE model in 120G (C2C)
- Compare to 120F (C2C)
- Compare to 120E (50G PAM4 C2M) and 83E (25G NRZ C2M)
- Consider differences, and why should we care
- Proposal for change, with some results

A look at Annex 120G CTLE

- CTLE transfer functions in annex 120G are based on Annex 93A (COM) equations, but with unusual parameters
 - In other places where these equations are used, we have $f_{p1}=f_z$, and $f_{p2}=f_b$
 - In 120G, these four parameters are different from each other
- The resulting CTLE is not passive (peak > 0 dB) for some values of g_{DC} (e.g. 0 dB)
 - With g_{DC} = -2 dB, after the specified H_r transfer function, the peak close to 0 dB (but not exactly)
 - But with lower values of g_{DC} the peak drops below 0 dB (down to -1.8 dB)
- The reason for this choice of parameters is unclear
 - Limiting max g_{DC} to -2 dB seems to be an attempt to hit 0 dB it has been changed across drafts (not stated explicitly)
 - It is not claimed to be optimal or to match reasonable implementations
- All resulting settings have some peaking and negative DC gain
 - Unlike other places that use COM equations

CTLE curves in 120G (host output) vs. 120F

Note that for minimum g_{DC}, the peaking frequencies in 120F and 120G are very close, but the peaks are different

CTLE curves in previous C2M annexes

120E used equations which create zeros/poles equivalent to typical COM CTLEs, but with a gain factor G to make all curves touch 0 dB

83E used somewhat different poles and zeros but also made all curves touch 0

Note that in both cases there is no "flat" setting (and the reference receiver has no DFE – may be related)

120G is a new beast

- The reference receiver includes a DFE, and a bandwidth limiting filter H_r, like C2C reference receiver (and unlike previous C2M)
 - The DFE has c(1) with minimum value of 0.1
- It requires limitations on values of g_{DC} to prevent positive gain
- CTLE Transfer functions do not touch 0 dB in all cases
 - No normalization factor
 - This means the definition of EH has changed from what it was in 120E/83E where normalization factor was always applied

Why should we care?

- Uniformity is better in a standard
- It is likely a better match to module and host capabilities (e.g. it is hard to avoid having some settings with no peaking)
- There may be cases (like hosts with very short traces) that with nonzero peaking create very small, or negative DFE taps, but these are not allowed.
 - These hosts might need negative pre-emphasis to pass the test (not a typical design)
 - But modules probably don't need this "tweak"
- It is expected to improve EH results and enable reducing max VdiffpTp to 600 mV.

What if we just use $g_{DC}=0$ for host output?

This is not proposed – just showing the effect on the two models

Outline of proposal

- Change the CTLE parameters to be equal to the ones defined in 120F (C2C)
- Modify g_{DC} ranges:
 - Enable g_{DC} up to 0 dB to ensure negative DFE will not be needed
 - Keep maximum boost requirements as they are. This requires reducing the minimum g_{DC} by 2 dB.
 - Keep the dependence of g_{DC} range on g_{DC2} (to reduce the number of combinations)
- Additionally, add a normalization factor to make all curves touch 0 dB (as in 120E, 83E)
 - This will apply positive gain in all cases where $g_{DC} < 0$
 - And will likely somewhat improve EH results

Some results of the proposed change

Host output (TP1a)

Module output (TP4 near-end)

Module output (TP4 far-end)

Proposal details

• Bring 93A.1.4.3 (Receiver equalizer) into the draft, and change Equation 93A–22 to include an additional factor G:

$$H_{ctf}(f) = G \frac{\left(10^{\frac{g_{DC}}{20}} + j\frac{f}{f_z}\right) \left(10^{\frac{g_{DC2}}{20}} + j\frac{f}{f_{LF}}\right)}{\left(1 + j\frac{f}{f_{p1}}\right) \left(1 + j\frac{f}{f_{p2}}\right) \left(1 + j\frac{f}{f_{LF}}\right)}$$
(93A - 22)

• Add text after the equation:

"Where G is a gain factor, whose value depends on the variable norm_ctle as follows:

- If norm_ctle is 1, G is set based on g_DC, f_z, g_DC2, f_LF, f_p1, and fp2, such that the maximum of $H_{ctf}(f) \cdot H_r(f)$ across f is equal to 1.
- If norm_ctle is 0 or is not provided by the clause that invokes this method, G is set to 1."
- In Annex 120G:
 - Apply changes to Table 120G–12 parameters as shown in the next slide.
 - Add the parameter norm_ctle with value 1 (in the table or in the text of 120G.5.2).

Table 120G – 12 changes

Parameter	Symbol	Value	Units	
Receiver 3 dB bandwidth	fr	0.75 × f b	GHz	1
Continuous time filter, DC gain for TP1a Range for $g_{DC2} = 0$ Range for $-1 \le g_{DC2} < 0$ Range for $-2 \le g_{DC2} < -1$ Range for $-3 \le g_{DC2} < -2$ Step size	\$DC	-2 to -9 -2 to -12 -4 to -12 -6 to -13 1.0	dB	15
Continuous time filter, DC gain 2 for TP1a Minimum value Maximum value Step size	SDC2	-3 0 0.5	dB	
Continuous time filter, DC gain for TP4 near-end Minimum value Maximum value Step size	gdc	$\frac{-5}{-2}$ -7 1.0	dB	
Continuous time filter, DC gain 2 for TP4 near-end Minimum value Maximum value Step size	SDC2	-2 0 0.5	dB	
Continuous time filter, DC gain for TP4 far-end Minimum value Maximum value Step size	gdc.	-9-11 -3 1.0	dB	
Continuous time filter, DC gain 2 for TP4 far-end Minimum value Maximum value Step size	SDC2	-3 -1 0.5	dB	
Continuous time filter, zero frequency for $g_{\rm DC} = 0$	f_z	12.58	GHz	$f_b/2.$
Continuous time filter, pole frequencies	f_{p1} f_{p2}	$\frac{-20}{-28}f_{h}$	GHz GHz	$f_b/2.$
Continuous time filter, low-frequency pole/zero	flf	<u>ர</u> ு/ 40 80	GHz	1

Table 120G–12—Eye opening reference receiver parameter values

Planned next steps

- Run EH/VEC simulations on candidate channels with/without the proposed change, and provide results
 - Pointing out candidate channels would be appreciated
 - If anyone has an automated test suite for this, help would be appreciated

Straw poll

- For the reference CTLE of Annex 120G:
 - A. I would support the proposed change if it does not degrade VEC/EH compared to the current parameters.
 - B. I would support the proposed change if it improves VEC/EH compared to the current parameters, and change the max VEC / min EH accordingly.
 - C. I am interested in the proposed change but some modifications are required.
 - D. I would not support any change.
 - E. I need more information.
 - F. I don't have an opinion.
- (choose one)