100GEL PACKAGE ASPECTS UPDATE

Richard Melitz – Samtec Liav Ben Artsi – Marvell Israel Ltd.

Table of Contents

- High radix package models
- Field solved 30 mm high radix package
- Matching to a COM package model
- Next steps and discussions

Comments

- PTH (plated through hole) on a thick core package seems inductive
- Coreless small packages not evaluated
- There seem to be 3 package cases for channel compliance
 - High radix packages with a long trace route
 - High radix packages with a short trace route
 - Low radix packages coreless packages

Package Model Extractions

- 30mm PKG trace was design and extracted using HFSS
- Trace width ≈ 30µ
- Dielectric Loss Coefficient = 0.0049 @ 10GHz (Room Temp)
- Next generation surface roughness treatment
- 30mm PKG trace with PTH @ mid of trace resulted in reflection within the compensation tap region
 - Reflection was bigger, but due to location better COM
 - May want to decide on exact location after definition of reference receiver topology
- 8mm model was supplied with higher Xtalk For extraction of sigma Xtalk noise - WIP

Synthetic 30mm Package Model Extraction

Synthetic 30mm Package Model Extraction

- Loss amount resulted in an amount close to 5dB @ 26.6GHz (aligned with prediction)
- No Manufacturing tolerance
- No temperature related extra loss

IEEE802.3 cd COM package model

Matching to extracted packages model

TP0

New Transmission Line Parameters

Tline Config	C 0	•
····· y	Gamma 0	0
PKG model	Alpha 1	0.0010404
	Alpha2	0.0003201
BRD model	Tau	0.00632523
Save Model	Z0	87.5
	Rev Z	50
Load Model		
		< >
29.5 mm		

Tline Config	Gamma 0	0
	Alpha 1	0.0010404
PKG model	Alpha2	0.0003201
BRD model	Tau	0.00632523
Cause Mandal	Z0	110
Save woder	Rev Z	50
Load Model		
		< >
1.8 mm		

Matching 100GEL RefPkg 30mm lowSR TDR into package without die load

PTDR and ERL match is good

Pulse Response (6 ps edge) Compares Well

IL compare

PTH moves to middle of package

Match for the mid PTH model

Pulse response compare (6 ps edge) (30 mm mid route PTH

IL compare

Die load (120 ff) pulse response and ISI taps

8 mm package has between SNDR between 43 dB and 51 dB

Test fixture not included

Suggested Next Steps and Discussion

- To Pass COM, Recommend lowering Cdie (Cd) in COM to ~100fF – Discussion
- Discuss possible PTH discontinuity again once Rx topology is decided
- Evaluate the impact of Manufacturing tolerance and temperature → discuss whether should be modeled or included in the COM margin
- More work on extracted dense PKG crosstalk Simulate impact
- Should SNDR_Tx be matched to short vs long package routing? - Discussion
- Are new COM package model(s) required? Discussion
- <u>All this suggests there is an expectation for the Rx reference</u> model