

A Proposed ADC-DSP Receiver Reference Model for COM

Yuchun Lu, Huawei Pengchao Zhao, Huawei Weiyu Wang, Huawei Yan Zhuang, Huawei Liyang Sun, Huawei

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Table of Contents

- Receiver Reference Models
 - Mix-Signal Receiver (Annex 93A)
 - ADC-DSP Receiver (Proposed)
 - Differences and New Parameters
 - Formulas for ADC-DSP Receiver
- Further Considerations of Receiver Reference Model
 - CTLE bandwidth
 - CDR locking phase
 - FFE&DFE adaption
 - Quantization issues

What do we have now?-- Mix-Signal Receiver Model

Reference: IEEE Std 802.3-2015, Annex 93A

Proposed ADC-DSP Receiver Model

• Quantized FFE and DFE models are considered both in signal and weight values.

4

What's New: Differences and New Parameters

ADC-DSP Receiver Model

- "Equalize then Slice" vs. "Equalize, Sample, Equalize then Slice". •
- "DFE only" vs. "FFE&DFE interaction". •
- "No quantization issues" vs. "ADC, FFE, DFE need quantized model."

Parameter	Symbol	Units
ADC input amplitude.	A _{adc}	mV
ADC resolution	N _{adc}	bit
FFE weight bit number	N _{ffe}	bit
DFE weight bit number	N _{dfe}	bit
FFE Tap Number	N _f	
FFE Pre Tap Number	N _{pre-ffe}	
DFE Tap Number	N _b	

- ADC input amplitude will impact the AGC gain.
- ADC input amplitude and resolution determine the quantization noise.
- FFE&DFE weight bit # will determine the residual ISI induced by the quantization.

ADC-DSP Reference Receiver Model: Revised Formulas

BUILDING A BETTER CONNECTED WORLD

Quantized Model

AGC model:

 $g_{\text{agc}} = \frac{A_{\text{adc}}}{\sum |h_i|}$, h_i is the sampled pulse response at ADC input. $H_{ctf}(f) = g_{\text{agc}} \cdot H_{ctf}^{\text{before AGC}}(f)$.

ADC model:

$$f_{ADC}(x) = \operatorname{round} \left[x \cdot \left(\frac{2^{N_{adc}}}{2 \cdot A_{adc}} \right) \right] \cdot \left(\frac{2 \cdot A_{adc}}{2^{N_{adc}}} \right)$$
$$\sigma_{Q}^{2} = \frac{1}{3} \left(\frac{A_{adc}}{2^{N_{adc}} - 1} \right)^{2}$$
$$x \text{ is ADC input signal.}$$

 $\begin{aligned} & \textbf{Quantized FFE Model:} \\ & f_{\text{FFE}}(x,i) = \sum_{j} \text{ffeWeight}_{j} \cdot x_{i-j} \\ & \text{ffeWeight} = \text{round} \left[\frac{\text{ffeWeight}}{\max_{i}(\text{ffeWeight}_{i})} \cdot 2^{N_{\text{ffe}}-1} \right] \cdot \frac{1}{2^{N_{\text{ffe}}-1}} \end{aligned} \\ & \text{Compute the DFE weight in digital domain then do the reverse conversion.} \end{aligned}$ $\begin{aligned} & \textbf{Quantized DFE model:} \\ & h_Q(i) = \text{floor} \left[\frac{\sum_{j} (\text{ffeWeight}_{j} \cdot 2^{N_{\text{ffe}}-1}) \cdot \left(f_{\text{ADC}}(h(i-j)) \cdot \frac{2^{N_{\text{adc}}}-1}{2 \cdot A_{\text{adc}}} \right) }{2^{(N_{\text{adc}}+N_{\text{ffe}}-1)-N_{\text{dfe}}}} \right] \\ & A_s^{\text{Q}} = \max(h_Q(i)), \text{ dfeWeight}^{\text{Q}} = h_Q(idx + 1 \sim idx + N_b) \\ & idx \text{ is the location of } A_s^{\text{Q}} \text{ in } h_Q(i). \\ & \text{dfeWeight} = \text{dfeWeight}^{\text{Q}} \cdot \frac{2^{(N_{\text{adc}}+N_{\text{ffe}}-1)-N_{\text{dfe}}}{2^{N_{\text{ffe}}-1}} \cdot \left(\frac{2 \cdot A_{\text{adc}}}{2^{N_{\text{adc}}-1}} \right) \end{aligned}$

Sampled Pulse Responses: $h_{FFE}(i) = \sum_{j} \text{ffeWeight}_{j} \cdot f_{ADC}(h(i-j))$ $h_{DFE}(i) = \begin{cases} h_{FFE}(i), & i \text{ is not DFE tap} \\ h_{FFE}(i) - \text{dfeWeight}_{i}, & i \text{ is DFE tap} \end{cases}$

Signal Amplitude and Residual ISI: $A_s = \max(h_{DFE}(i))/(L-1)$, Eye height, align with Annex 93A $h_{ISI}(i) = \begin{cases} 0, & i \text{ is main tap} \\ h_{DFE}(i), & i \text{ is not main tap} \end{cases}$

Further Considerations

- ① CTLE bandwidth. The peak frequency of 802.3cd CTLE is ~32GHz@53.125GBd.
 - Introduce a scaling factor (≤ 1) of f_b in CTLE formula?
- ② CDR locking phase.
 - Pulse response peak [@ADC input/CTLE output] or MM-PD locking phase or Multiple locking phase?
- ③ FFE&DFE adaption, Interaction of FFE and DFE.
 - The choice of Pos1 to Main ratio (i.e. b_{max}). Fixed or Adaptive?
- ④ Quantization issues
 - ADC input amplitude (Automatic gain control, AGC) & resolution
 - Quantized FFE & DFE model.

JOIN US IN BUILDING A BETTER CONNECTED WORLD

THANK YOU