$\overbrace{0}^{\circ}$ CrędŐ

Comparison of KR/CR Reference Receivers

IEEE P802.3ck Task Force Ad Hoc, 12/05/2018
Phil Sun, Yasuo Hidaka
Credo Semiconductor

Introduction

\Rightarrow There are discussions regarding performance of different KR/CR reference receivers.
$>$ This contribution presents COM simulation results for all $115 \mathrm{KR} / \mathrm{CR}$ channels submitted to 802.3ck project (including 100GEL) with the three reference receivers under discussion.

- A: Existing long DFE receiver.
- B: Long FFE + 1-tap DFE receiver.
- C: 3-tap FFE precursor + long DFE post cursor receiver.
$>$ DFE first tap weight (b1) was limited to 0.7 in existing COM tool. This contribution shows DFE receiver performance is much better if b1max is relaxed to 0.85 or 1.0 .
- b2 becomes more positive for larger b1 and alleviates error propagation. The values of b1, b2, and b3 can be controlled for real receivers.
- Interleaved FEC (if adopted) can tolerate more burst errors.
$>$ TX FIR resolution impact is studied.

Simulation Conditions

Model Name		DFE (DFE-based)	PDFE (DFE + 3 pre-taps)	FFE (FFE-based)
\# of taps	DFE	20	20	1
	FFE	0	4 (3-pre + 0-post)	24 (3-pre + 20-post)
	TX FIR	5 (3-pre + 1-post)		
Step	RX DFE, FFE	0\%		
	TX FIR pre	1.5\% / 2.0\% / 2.5\%	1.5\% / 2.5\%	1.5\% / 2.0\% / 2.5\%
	TX FIR post	5\%		
DFE b1max		0.7 / 0.85 / 1.0	0.7 / 0.85 / 1.0	0.7 / 0.85

> Label of Simulation Condition: Prefix + Model Name + Suffix

- Prefix: step of TX FIR pre taps
- None: 1.5\%, C (coarse): 2.5\%, M (Medium): 2.0\%
- Suffix: DFE b1max value
- Example
- CDFE0.85: DFE-based with DFE b1max=0.85 and 2.5% step of TX FIR pre taps
- PDFE0.7: DFE + pre-taps with DFE b1max=0.7 and 1.5% step of TX FIR pre taps

Other Simulation Conditions

\rightarrow RX FFE tap range

- main_min $=0.7$, pre1_max $=0.3$, post1_max $=0.3$, tapn_max $=0.125$
> Package Model (Tx and Rx)
- 30 mm @ $87.5 \Omega+1.8 \mathrm{~mm} @ 92.5 \Omega$
- $C_{d}=110 f F, C_{p}=70 f F, R_{d}=50 \Omega$
> Noise, jitter
- $\eta_{0}=8.20 \mathrm{E}-9 \mathrm{~V}^{2} / \mathrm{GHz}, \mathrm{SNR}_{\mathrm{TX}}=32.5 \mathrm{~dB}, \sigma_{\mathrm{RJ}}=0.01 \mathrm{UI}, \mathrm{A}_{\mathrm{DD}}=0.02 \mathrm{UI}, \mathrm{R}_{\mathrm{LM}}=0.95$
$>$ COM Tool version
- v2.53 + local modification to fix bugs

Channel Data for Simulation

＞Simulation was done for the following publicly available 115 LR channels

CH \＃	Group	Description	Reference Document
$1-2$	RM1	Two Very Good 28dB Loss Ideal Transmission Lines	mellitz＿3ck＿adhoc＿02＿072518．pdf
$3-8$	RM2	24／28／32dB Cabled Backplane Channels including Via	mellitz＿3ck＿adhoc＿02＿081518．pdf
$9-10$	RM3	Synthesized CR Channels（2．0m and 2．5m 28AWG Cable）	mellitz＿100GEL＿adhoc＿01＿021218．pdf
$11-13$	RM4	Best Case 3＂，13＂，18＂Tachyon Backplane	mellitz＿100GEL＿adhoc＿01＿010318．pdf
$14-15$	NT1	Orthogonal or Cabled Backplane Channels	tracy＿100GEL＿03＿0118．pdf
16	AZ1	Orthogonal Backplane Channel	zambell＿100GEL＿01a＿0318．pdf
$17-19$	HH1	Initial Host 30dB Backplane Channel Models	heck＿100GEL＿01＿0118．pdf
$20-35$	HH2	16／20／24／28dB Cabled Backplane Channels	heck＿3ck＿01＿1118．pdf
$36-54$	UK1	Measured Traditional Backplane Channels	kareti＿3ck＿01a＿1118．pdf
$55-73$	UK2	Measured Cabled Backplane Channels	
$74-88$	UK3	Measured Orthogonal Backplane Channels	
$89-115$	AZ2	Measured Orthogonal Backplane with Varied Impedances	zambell＿3ck＿01＿1118．pdf

All channel data are taken from IEEE 100GEL Study Group and P802．3ck Task Force－Tools and Channels pages．
i．e．http：／／www．ieee802．org／3／100GEL／public／tools／index．html and http：／／www．ieee802．org／3／ck／public／tools／index．html

Receiver Performance with Relaxed b1max

> Performance difference close to 3dB threshold is more critical for channel qualification purpose.
$>$ In critical region, DFE receiver performance can be $\sim 0.5 \mathrm{~dB}$ better with b1max relaxed from 0.7 to 0.85 .
$>$ In critical region, DFE receiver performance can be $\sim 0.2 \mathrm{~dB}$ better if b1max is relaxed from 0.85 to 1.00 .
> Relaxing b1max does not help FFE as much.

- The biggest COM difference is FFE0.7 performs about 0.3 dB better than FFE0.85.

Performance Comparison of DFE and FFE Receivers

$>$ Performance of DFE is similar to FFE when COM is close to 3 dB (2.5 to 3.5)
$>$ With b1max $=0.85$, COM difference is within $\sim 0.5 \mathrm{~dB}$ for FFE and DFE receivers.

- The only pass/fail inconsistency is one channel passed by DFE receiver but failed very marginally by FFE receiver.

PDFE Receiver Performance

DFE* vs PDFE0.7
> PDFE is always better than DFE or FFE

- Even PDFE0.7 (b1max=0.7) is mostly better than DFE0.85 and FFE0.85.
- PDFE0.85 and PDFE1.0 are always better than PDFE0.7 (shown in backup)
$>$ PDFE is an ideal analog SERDES architecture
- It has implementation penalties which is not captured by this ideal reference model.
> PDFE passes channels that cannot be supported by typical DFE or FFE receivers.

TX Resolution Impact

DFE vs [CM]DFE

FFE vs [CM]FFE

> 2.5\% (CDFE and CFFE) are often much worse than 1.5\% (DFE and FFE)
$>2.0 \%$ (MDFE and MFFE) are close to 1.5% (DFE and FFE)

DFE Tap Weight Impact on FEC Performance

100G 5-tap DFE results ($0.7,0,0.2,0,0.2$) with precoding 100 G with 5 -tap DFE $(0.85,0.2$ or $0.1,0.2,0,0.2)$

$>[0.85,0.1 / 0.2,0.2,0,0.2]$ has less burst error penalty than $[0.7,0.0,0.2,0,0.2]$. Positive h2 alleviates error propagation.

DFE Tap Weight Impact on FEC Performance Cont.

100G with 5 -tap DFE ($0.85,0.2$ or $0,0.15,0.1$ or $0,0.06$)

> Precoding becomes effective for smaller DFE tail weight or when DFE tail taps cancel each other. DER required by a single-tap or multi-tap DFE becomes similar.
> Precoding is less effective for burst caused by heavy DFE tail and slow noise.

- PAM4 clock content issue may cause burst errors?
- These factors need to be considered in link budget calculation.

DFE Tap Weight b2, b3 Statistics

$>$ For reasonable channels $(C O M \geq 2 d B)$, b2min is observed to be more positive with larger b1.

- b2 ≥ 0.10 with b1 $\max =0.85$
- $\mathrm{b} 2 \geq 0.15$ with $\mathrm{b} 1 \max =1.0$

Conclusions

COM simulation shows similar performance of DFE and FFE receivers with proper b1max.

- Parameter b1max was limiting DFE receiver performance and can be relaxed.
$>$ A receiver with DFE + FFE precursor (PDFE) is an ideal analog SERDES architecture. But as a reference model it passes channels that cannot be supported by typical architectures A and B.
> Existing DFE reference receiver has some desired features:
- COM tool has an elegant simple algorithm for DFE receiver, but does not always work properly for long FFE receivers.
- DFE tail provides a tool for burst error penalty and precoding analysis.
- DFE based reference model checks TX FIR impact which could be overlooked by the other two models.
$>2 \%$ or finer TX FIR resolution is recommended.
$>$ Future work includes checking impact of implementation penalties, e.g. ADC ENOB (~ 5.5 bit).
- DFE and FFE receiver performance tracks each other. Compared to existing COM receiver, relaxing b1max or using FFE is equivalent to relaxing 3dB COM threshold to $\sim 2.5 \mathrm{~dB}$.
- This is to check whether 3dB COM is proper with a stronger reference model. Detailed implementation penalty model may be too complicated to be put in COM tool.

CrędÓ

Backup Slides

Comparison with COM (DFE0.85) as X axis

Comparison with COM (CDFE0.85) as X axis

Comparison with COM (FFEO.7) as X axis

Comparison with COM (PDFE0.7) as X axis

PDFE Receiver Performance Cont.

$>$ Other contributions also showed PDFE passes channels that cannot be supported by FFE receivers.

- li 3ck 02a 1118, sakai 3ck 01a 1118

