A Few Common Mode Measurements

Richard Mellitz, Samtec Acknowledgements: Jean-Remy Bonnefoy, Istvan Novak (Samtec)

December 8, 2021

CM measurement data

- □ Limited scope of measurements
- □ Targeting DC-DC CM impacting 100G SERDES lines
- Goal: Illustrate nature of at least 1 type of CM noise
- □ Not covering impact of "in-band" CM either coherent of not.

Experiment: Power supply common model noise on 100 Gb/s PAM4 signal

DC-DC converter coupled noise

- Only one particularly setup used for the purpose of getting an indication of the nature on 1 type of common mode voltage
- Evaluate
 - CM Signal waveform
 - Power spectral density of CM signal
 - CM probability density function (PDF)
 - CM cumulative distribution function (CDF)

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

 Λ BER

Common Mode (CM) Measured Signals

Indications are that solid traces have the least effect on BER

Common Mode (CM) Power Spectral Density

A few MHz bandwidth

Common Mode (CM) Probably Density Function (PDF)

Not Gaussian ... a parabola would be Gaussian

Common Mode (CM) Cumulative Distribution Function (CDF)

Observations and discussions

- DC-DC converter Nosie is limited to a few MHz
- □ Consider 2 specs for CM at TP0v
 - 2 spec for TPOv.
 - Lower frequency would have little dependence on fixture loss
 - Signal to AC common-mode noise ratio, SCMR (min) is seems applicable
 - Higher frequency noise would be dependent on fixture loss
 - Signal to AC common-mode noise ratio, SCMR (min) is seem applicable
- Sinusoidal vs Gaussian noise
 - Issue is for low and high frequency
 - Sinusoidal
 - Peak = sqrt(2) * rms = crest factor * rms
 - Gaussian
 - Peak= qfunctinv(DER0)*rms
 - Potential solution adjust for crest factor (Peak/rms)
 - Other option are possible