PKG MODEL FOR 802.3CK COM

Package Discussions Update
Richard Mellitz - Samtec
Liav Ben Artsi - Marvell Israel Ltd.

Status Update

- Inputs from the group claimed that PKG trace loss is on the pessimistic side Updated - Slide \#3
- Current suggestion is to go forward with the updated trace parameters (excluding length) as a basis for analysis - Slide \#4 ; Impedance may vary later on if we find fit not to be accounted for @ this stage
- Inputs stated that the trace length in a $70 \mathrm{~mm}^{2}$ PKG will exceed 30 mm ($36 \mathrm{~mm}-40 \mathrm{~mm}$)
- It is assumed that in a long trace case PKG trace characteristics can not follow 5dB @30mm (as was presented in Bangkok)
- What is the appropriate trace length to be used in COM? (many options)
- Decision tree will be presented going forward mainly targeting topology stake in the ground

PKG Extracted Trace Change Highlights

- Surface Roughness to follow best case of surface roughness technology
- Dielectric material characteristics taken @ room temperature (0.004)
- Resulting loss $\approx 4 \mathrm{~dB}$ @ Nyquist - Correlated to inputs
- Ball side equivalent capacitance taken closer to the higher end. i.e. 0.9 fF (actual is 0.87 fF)
- Impedance used was a bit higher (closer to the 92.5Ω target)
- Matched to a model by Rich (Thanks!)
- There is a notion to proceed with this trace loss (and the model that goes with it) to the next phase
- Used 110fF for die side capacitance in runs
- Running with Zambel orthogonal 28.6 dB orthogonal BP result $>3.5 \mathrm{~dB}$ COM

Suggested Matched Parameters

C_d	[1.1e-4 1.1e-4]	nF	[TX RX]
z_p select	$[12]$		[test cases to run]
z_p (TX)	$[1230 ; 1.81 .8 ; 00 ; 00]$	mm	[test cases]
z_p (NEXT)	$[1230 ; 1.81 .8 ; 00 ; 00]$	mm	[test cases]
z_p (FEXT)	$[1230 ; 1.81 .8 ; 00 ; 00]$	mm	[test cases]
z_p (RX)	$[1230 ; 1.81 .8 ; 00 ; 00]$	mm	[test cases]
C_p	$[0.87 \mathrm{e}-40.87 \mathrm{e}-4]$	nF	[TX RX]

package_tl_gamma0_a1_a2	$[00.00099090 .0002772]$	
package_tl_tau	$6.14 \mathrm{E}-03$	$\mathrm{~ns} / \mathrm{mm}$
package_Z_c	$[87.587 .5 ; 92.592 .5 ; 100100 ; 100$	Ohm (tdr sel)

Updated Run

- Former runs resulted in $\sim 2.8-2.9 \mathrm{~dB}$ of COM
- Current parameters result in 3.6dB COM

Decision Tree

- Assumption: Trace parameters and ball discontinuity to follow written in slide \#4
- Recommendation is that these parameters will be used for future analysis (excluding length)
- Decision \#1: Topology options (main open item to be defined before putting PKG model stake in the ground):
Lengths below exclude 1.8 mm designated for PTH+lower laser via+ball delay and loss
- Symmetric
- $30 \mathrm{~mm}, 32 \mathrm{~mm}, 34 \mathrm{~mm}, 36 \mathrm{~mm}$ per side
- Asymmetric (36mm \& 30mm)
- Tx Longer (may pose a challenge on ITol Rx testing)
- Rx Longer (May pose a challenge on Tx qual @ TPO in longer packages
- Decision \#2: Cd = 130fF / 110fF (10fF assumed to be related to PKG side bump pad parasitic capacitance)
- Recommendation:
- Use data provided to analyze and come up with recommendation(s) as to appropriate decision(s) in the above decision tree

Thanks!

