

Investigation of IEEE 802.3ck Baseline Reference Receiver Candidates

Yuchun Lu, Huawei Zhilei Huang, Huawei Yan Zhuang, Huawei

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Background

- Two goals of the reference receivers:
 - Configuration spreadsheet for COM
 - No need to imply implementation. No implementation details for consensus building.
 - DFE, FFE-lite, FFE-heavy are all supported by <u>COM 2.53</u>.
 - DFE error propagation model and FEC performance analysis
 - Reference receiver impacts the PCS and FEC design.
 - Should we use interleaved FEC to guarantee performance in consideration of extra latency and complexity?
 - Should interleaved FEC be mandatory or optional, configurable or negotiable?
 - Narrow down to 1-tap DFE (FFE-heavy) and n-tap DFE (FFE-lite) based receivers.

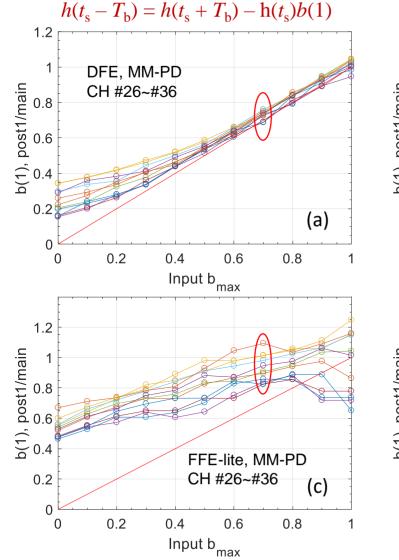
Table of Contents

- Observed consensus from the Bangkok meeting
- Baseline reference receiver candidates and channels under investigation
- Control of b(1) for DFE and FFE-lite receiver with MM-PD and Modified PD
- Performance comparison of DFE-, FFE-lite, FFE-heavy with COM
- Comparison of COM reference receivers with different configurations
- Summary and Suggestions

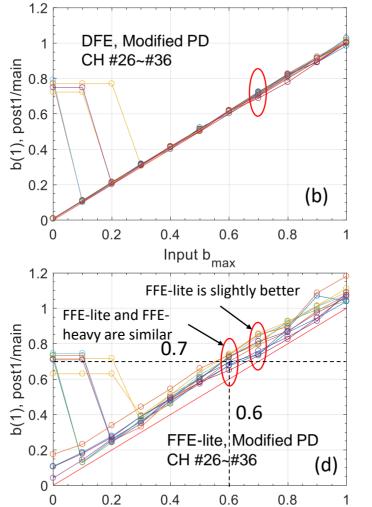
Observed Consensus from Bangkok meeting

- Contributions related to COM reference receiver modeling
 - li 3ck 02a 1118 (Intel) & wu 3ck 01 1118 (MediaTek), show that FFE-lite and FFE-heavy give similar COM.
 - <u>lu 3ck 01_1118</u> (Huawei) shows that the difference between FFE- and DFE-based receiver is in the precursor cancellation. Since FFE-lite addresses the difference, its COM values are similar to FFE-heavy.
 - <u>kareti 3ck 01a 1118</u> (Cisco) shows that DFE has performance concerns and un-constrained DFE and floating tap DFE improves the performance.
 - <u>heck_3ck_01_1118</u> (Intel) shows that at least 20-tap DFE is required in RX EQ, and even with 24 taps we don't meet 3dB for all channels.
 - <u>sakai 3ck 01a 1118</u> (Socionext) shows that using no Rx FFE pre-taps degrades COM in 0.55~0.96dB.
- All these independent simulation results are consistent!
- Consensus that we may derive from the simulations:
 - DFE has performance concerns and needs to be improved.
 - FFE is needed in the receiver while FFE-heavy and FFE-lite give similar COM.
 - Both FFE-heavy and FFE-lite are usable for COM, they are highly correlated.

Baseline reference receiver candidates and channels under investigation


#	Arch.	Reference Receiver	Configurations in the simulation		
DFE	DFE-based	DFE-Only	24 taps		
FFE-lite	FFE-based	'm-pre & 0-post' FFE + n-tap DFE	3-pre & 0-post FFE & 24-tap DFE		
FFE-heavy	FFE-based	'm-pre & n-post' FFE + 1-tap DFE	3-pre & 24-post FFE + 1-tap DFE		

Channel		IL fitted (dB)	ICN (mV)	FOM_ILD	COM (dB)						
					DFE	DFE	DFE	FFE-lite	FFE-lite	FFE-lite	FFE-heavy
				(dB)	b_max=0.7	b_max=1.0	b_max=1.0	b_max=0.7	b_max=0.7	b_max=0.6	b_max=0.7
					MM-PD	MM-PD	Modified PD	MM-PD	Modified PD	Modified PD	
mellitz_3ck_adhoc_02_081518 Opt1	26	-23.79	0.56	0.23	4.19	4.53	4.53	5.03	5.15	5.06	5.13
	27	-27.59	0.42	0.26	2.53	3.28	3.28	4.09	3.99	3.86	4.06
	28	-31.36	0.33	0.29	0.49	1.67	1.61	2.67	2.36	1.90	2.41
mollitz Jok odbog 02 091519	29	-22.98	0.66	0.46	3.72	4.45	4.17	5.02	5.13	5.07	5.08
mellitz_3ck_adhoc_02_081518 Opt2	30	-26.72	0.49	0.51	2.93	3.38	3.35	4.21	4.15	4.00	4.23
ΟριΖ	31	-30.42	0.37	0.58	0.96	1.77	1.77	2.83	2.68	2.36	2.75
tracy_100GEL_04_0118	32	-22.94	0.36	1.28	4.73	4.99	4.99	5.33	5.39	5.34	5.22
tracy_100GEL_05_0118	33	-23.90	0.54	1.50	3.46	3.25	3.25	4.38	4.37	4.28	4.35
zambell_100GEL_02_0318	34	-27.40	0.29	0.27	2.92	2.90	2.86	4.18	4.36	4.22	4.29
mellitz_3ck_adhoc_02_072518	35	-28.01	0	0.03	3.07	4.37	4.28	5.32	4.84	4.43	4.61
	36	-27.98	0	0.00	2.88	3.81	3.81	4.55	4.34	4.07	4.33


Total **106** channels including 96 new channels from <u>zambell_3ck_01_1118</u>, <u>kareti_3ck_01a_1118</u>, and <u>heck_3ck_01_1118</u> are considered. The package configuration is the same as <u>lu_3ck_01_1118</u>.

MM-PD : $h(t_s - Tb) = h(t_s + Tb) - h(t_s)b(1)$, Annex(93A) Modified PD: $0 = h(t_s + Tb) - h(t_s)b(1)$, Remove the impact of pre-1 cursor (New).

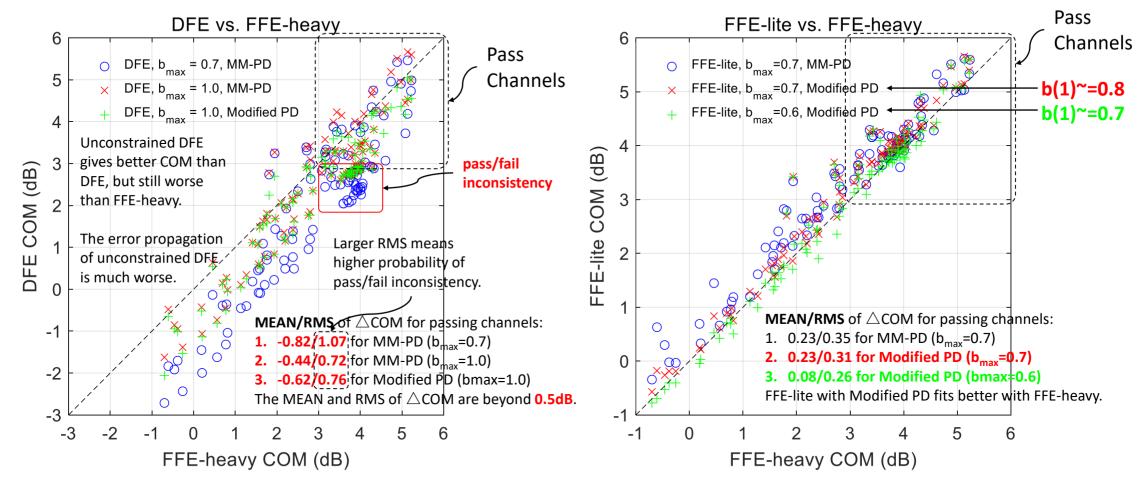
Modified PD has better control of b(1) for DFE- and FFE-lite receiver


 $0 = h(t_s + T_b) - h(t_s)b(1)$

- DFE and FFE-lite relies on the sampling phase to control the b(1), i.e. Post1/Main.
 - MM-PD has worse control of b(1), varies from 0.8 to 1.1.
 - Modified PD gives better control of b(1).

HUAWE

FFE-heavy can achieve precise b(1) control over a wide range of sampling phase. Set b_max=0 FFE-heavy can switch off DFE to support C2M.



•

•

BUILDING A BETTER CONNECTED WORLD

Performance comparison of DFE-, FFE-lite, FFE-heavy with COM

Total 106 channels including 96 new channels from <u>zambell_3ck_01_1118</u>, <u>kareti_3ck_01a_1118</u> and <u>heck_3ck_01_1118</u>. Unconstrained DFE results are consist with <u>kareti_3ck_01a_1118</u> (Cisco). FFE-lite results are consist with <u>li_3ck_02a_1118</u> (Intel) & <u>wu_3ck_01_1118</u> (MediaTek).

Comparison of COM reference receivers with different configurations

#	# A: DFE n-tap DFE		B: FFE-lite 'm-pre & 0-post' FFE + n-tap DFE			C: FFE-heavy 'm-pre & n-post' FFE + 1-tap DFE	
Sampling Phase	MM-PD	MM-PD/ Modified PD	MM-PD	Modified PD	Modified PD	Do not care.	
b_max	0.7 1.0		0.7	0.7	0.6	0.7	
Performance	Lowest 🗶	Low 🗶	High 🗸	High 🗸	High 🗸	High 🗸	
Control of b(1)	Good 0.7~0.8	Better ~0.7	Worst 0.8~1.1 🗶	Good 0.73~0.86	Better 0.65~0.74 ✓	Best =0.7 ✓	
Correlation with others		l correlation with sed receivers	Highly correlated with each other 🗸				
Support C2M FFE receiver	No 🗴	No 🗴	Yes (set b_max=0, and adjust FFE configuration.)			Yes (set b_max=0)	
DFE error propagation modeling complexity	High	High	High	High	High	Low	
Post-FEC performance	Low?	Low?	Low?	Low?	Low?	High	
Implementation Compliance	Good	Good	Low	Low	Low	High	
Implementation Complexity	Low	Low	High	High	High	Low	

- DFE based receiver has performance concern, even removes the 'b_max=0.7' constrain.
- Modified PD is recommended to achieve better b(1) control for FFE-lite and DFE receivers.
- Both FFE-lite and FFE-heavy are usable as COM reference receiver, the correlations of these two receivers are high.

Summary and Suggestions

- Summary
 - DFE-base receiver underperforms, even removes the 'b_max=0.7' constrains.
 - Both FFE-heavy and FFE-lite are usable as COM reference receiver.
 - Using 'Modified PD' and 'b_max=0.6' in FFE-lite receiver can achieve b(1) ~=0.7.
 - If 'b(1)~=0.7' is satisfied, the COM difference between FFE-heavy and FFE-lite is minor.
 - FFE-lite has bad control of b(1) with MM-PD, but can be improved with modified PD.
 - Even with MM-PD the COM difference between FFE-lite and FFE-heavy receivers are acceptable.
 - Same modeling complexity, since they are all supported by <u>COM 2.53</u>.
- Suggestions
 - Move forward with FFE-heavy or FFE-lite reference receiver (they give similar COM).
 - Recommend to include the 'Modified PD' to improve the control of b(1) for FFE-lite receiver. Using 'Modified PD' and 'b_max=0.6' in FFE-lite receiver gives b(1) ~=0.7 to further reduce the COM difference between FFE-lite and FFE-heavy receivers.
 - Retain the 'b(1)=0.7' criteria, because it was the baseline of IEEE 802.3bj/802.3bs/802.3cd.
 - Further investigate the DFE error propagation with FFE-lite reference receiver, and provide the reference DFE weight configurations for DFE error propagation investigation.

JOIN US IN BUILDING A BETTER CONNECTED WORLD

THANK YOU