**Common Mode (CM) Noise: Next Steps** 

Richard Mellitz Samtec

December 16, 2020

### Table of Contents

- □ Prior CM work
- □ CM to Differential noise from Crosstalk channels
- Insight from comparing CM crosstalk responses to crosstalk responses
- Insight from simulated noise waveforms compared to signal waveforms
- Measurement methods
- Discussion

# ran\_3ck\_04\_1020 suggests sources and impact of common mode (CM) noise



# ghiasi\_3ck\_03a\_0720 also suggest sources of CM Noise

#### Sources of Common Mode

- Driver P/N asymmetry and interconnect P/N mismatch are the two sources of common mode generation
  - Graph show the theoretical impact of 3-10 ps of skew on C2M IL where the penalty increases with the Baudrate increase, D. Nozadze, IEEE EPEPS, 2017
  - The CK channels already include effects of P/N mismatch but currently COM reference model and package don't
    excite the common modes and obviously the impact is overlooked at the receiver.



### mellitz\_3ck\_adhoc\_01\_061720 suggest similar CM sources

What might a common signal look like



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

9

# Ways to look a CM noise impacting the differential signal at the receiver.

□ Eventually CM noise looks like crosstalk

• One big question is how much get to into the receiver

wu\_3ck\_adhoc\_01\_090920.pdf - good way to get a feel for CM

- SDC21 peaks
- SDD21 (dB) SDC21 (dB)
- Integrated CM noise due to SDC21

□ mellitz\_3ck\_adhoc\_01\_061720 – method to compute impact

- Use the common mode to differential mode voltage transfer function
- Trial impact version is COM
  - However the big question here is what to use as a CM source

#### Simple model



\*VTF ~ voltage transfer function

# A little more detail: Should Crosstalk CM be considered



# Getting a feel for understanding if crosstalk CM matters?

- □ crosstalk CM peaks are between 35 and 45 dB
  - For 1.5 m and 2 m cables,
- □ CM conversation is are not significant if the CM voltage is low
- □ Following 15 slides are snapshots sampling of the CM data
  - This should lend a feel for what channel CM data could be expected

#### CM Data

- □ Slides of IL and CM loss for collection of cable posted channels
- □ Slides of comparison between CM an crosstalk pulse responses
  - Crosstalk uses Afe and Ane as pulse voltage
  - CM use 1 V as pulse voltage ... will be adjusted later
- □ One slide for on channel comparing crosstalk and CM responses

#### mellitz\_3ck\_02\_1118\_CA--qsfpddmtf-dd-2mqsfpddmtf\_V2\_thru



### P2\_TX8\_P1\_RX8\_Normal



### P1\_TX4\_P2\_RX4\_Normal



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

## THRU\_Molex\_TP1-TP4\_2mQSFP-DD\_RowA\_07-2019\_P1Tx4-P2Rx4



#### Thru\_Tx7\_TP1toTP4\_OSFP100G\_1p5m\_28AWG



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

### CA\_19p875dB\_thru



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

### 7

#### Thru\_Tx7\_TP1toTP4\_OSFP100G\_2m\_28AWG



#### mellitz\_3ck\_02\_1118\_CA--qsfpddmtf-dd-2mqsfpddmtf\_V2\_thru



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

### P2\_TX8\_P1\_RX8\_Normal



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

### P1\_TX4\_P2\_RX4\_Normal





## THRU\_Molex\_TP1-TP4\_2mQSFP-DD\_RowA\_07-2019\_P1Tx4-P2Rx4



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

#### Thru\_Tx7\_TP1toTP4\_OSFP100G\_1p5m\_28AWG (12)



### CA\_19p875dB\_thru



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

### Thru\_Tx7\_TP1toTP4\_OSFP100G\_1p5m\_28AWG (14)



#### IL and Through CM response



#### CM responses

CM Through Losses CM Crosstalk Losses Crosstalk Losses



#### Crosstalk responses

CM Through Losses CM Crosstalk Losses Crosstalk Losses



# Evaluation of CM sources with waveform simulation

- Similar to ghiasi\_3ck\_03a\_0720 and mellitz\_3ck\_adhoc\_01\_061720
   Emulate CM noise
  - Use toleranced package for each p/n leg for correlated CM
  - Use AWGN CM mode noise source at die pad drive for uncorrelated CM
  - Utilize waveform simulation with Matlab (not COM)
- What to observe
  - Waveforms
  - Noise probability density functions (PDF)
  - Noise Power Spectral densities (PSD)

### Unbalanced and skewed package models



### Simulation of common mode at package voltages at TPO and TPOv



### Simulation Conditions

- No Txffe
- □ Tr = 7.5 ps
- □ Av= 400 mV
- □ No noise or jitter
- □ BT filter

#### Introduce 3.7 ps p-n skew at TPO



Gaussian

#### PSD from 3.7 ps skew at TPO



Data Stream PSD

CM waveform PSD

#### Introduce 10 % p-n package components variation at TPO



Not as much as might be expected

#### PSD from 10 % p-n package components variation at TPO



CM waveform PSD



Data Stream PSD

#### 15 AC CM RMS at TPO (Broad Band AWGN Source)



#### PSD from 15 AC CM RMS at TPO



### Now let's looks a channel simulation

- □ Looking at Rx w/o Rx package
- No Jitter
- No Noise
- D No DFE

### Simulation estimate of differential noise from common mode at receiver



#### Use a 28 dB channel Plus a Tx package



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

#### 10 % p-n package components variation at Rx



#### 3.7 ps p-n skew



## Noise at Rx with 15 AC CM RMS at TPO (Broad Band AWGN Source)



# Now let's look at 1 crosstalk file for the 28 dB channel



Crosstalk noise compared CM cause by 3.7 ps package skew, 10 % p-n package components , and 15 mV BBN (TPO)



#### Actions Required

Measurement proposals

#### Discussion: This all boils down to what is observable

#### □ ran\_3ck\_04\_1020 suggests

- Refine AC common mode measurements to separate correlated and uncorrelated components
- What could be considered
  - How small a CM voltage is reasonable?
  - Time sampled CM signal acquisition
    - What are the Attributes which are different from simulation
  - PDF of signal
    - DD or Modes
    - RMS
    - Instrument noise removal
  - Bandwidth filters
  - Pattern lock trigger or untriggered
  - New → Specify 95% confidence factor for the noise measurements.
    - This may mitigate instrument differences