$\overbrace{0}^{\circ}$ CrędŐ

Two-Phase Grid Search for Fast COM Calculation

 IEEE P802.3ck Task Force Ad Hoc, 12/12/2018Yasuo Hidaka, Phil Sun
Credo Semiconductor

Introduction

$>$ COM calculation time is mainly contributed by

- Computation iteration for TX FIR taps, CTLE curves, low-frequency CTLE
- FFE-based model needs extra computation for inversion of large matrix
- For each grid of FOM optimization, inversion of NxN matrix is required for N-tap RX FFE
- Computation cost of NxN matrix is $\mathrm{O}\left(\mathrm{N}^{3}\right)$
$>$ We evaluated a two-phase grid search algorithm to look for much faster COM calculation

Two-Phase Grid Search for fast FOM Optimization

$>$ Full-Grid Search (Conventional)

- Check all values
- Ex) min / step $/ \max =-0.30 / 0.02 / 0.00$

> Two-Phase Grid Search (New)
- Phase 1: double the step size
phase 1 result

- Phase 2: half the search range with the phase 1 result at the center

Aggressive vs Conservative Range Reduction in Phase 2

> Two possible schemes

- Aggressive reduction: just a few grids
phase 1 result
- E.g. 5 grids

- Conservative reduction: scaled range
- E.g. half range

\sim full range $(=0.30)=16$ grids
$>$ We propose conservative reduction
- Aggressive reduction may cause a result different from the full-grid search
- In fact, we observe gDC of phase 1 is -16 dB , whereas gDC of full-grid search is -11 dB
- To get the same result as the full-grid search, we need a quite wide range in phase 2

\# of Grids by Conservative Range Reduction

$>$ For each parameter,

- \# of grids in phase 1 is about half, because of double step
- \# of grids in phase 2 is about half, because of half range
- Hence, total \# of grids for each parameter does not change from the full-grid search
$>$ For multiple (e.g. 4) parameters,
- Total \# of grids in phase 1 is about $\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$ because of double step
- Total \# of grids in phase 2 is about $\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$ because of half range
- Hence, total \# of grids for 4 parameters is about $\left(\frac{1}{2}\right)^{4} \times 2=\frac{1}{8}$ of the full-grid search
$>$ Namely, although the \# of grids for each parameter does not change, total \# of grids for N parameters will reduce by a factor of $\frac{1}{2^{(N-1)}}$

Requirements for Min \# of Grids and Options

$>$ We applied the algorithm only to parameters with ≥ 6 grids

- With ≤ 5 grids (i.e. ≤ 4 segments), check all full grids in phase 1 and 2
- Ex) min / step / max $=-0.10 / 0.02 / 0.00$ (example of min \# of grids)

- Phase 1 (double the step size) phase 1 result

- Phase 2 with Option A: min 5 grid

- Phase 2 with Option B: min 3 grid

Experimental Implementation

$>$ In order to evaluate how close results we can get to the full-grid search, we experimentally implemented the algorithm as a wrapping function

- The wrapping function calls the COM tool function for multiple times
- For each phase
- For each package length
- It has unnecessary overhead
- S-parameter files are loaded and analyzed for multiple times
- COM value for phase 1 is unnecessarily calculated
> Once we have consensus, we can work on the full implementation

Evaluation Conditions

$>$ Equalizer configuration

- RX model
- DFE-based model (b1max $=0.85, \mathrm{Nb}=16$ for all conditions, $\mathrm{Nb}=20 / 24 / 28$ for limited conditions)
- FFE-based model (b1max $=0.7, \mathrm{Nb}=1$, pre=3, post=16/20/24/28 for limited conditions)
- TX FIR tap range
- $c(-3) \in[-0.06: 0.02: 0], c(-2) \in[0: 0.02: 0.12], c(-1) \in[-0.34: 0.02: 0], c(1) \in[-0.1: 0.05: 0]$
- $c(0) \geq 0.54$
- RXCTLE
- gDC $\in[-20: 0], g D C 2 \in[-6: 0]$
> Package Model (Tx and Rx)
- $z_{p}=12 \mathrm{~mm}$ or $30 \mathrm{~mm}, C_{d}=110 f F, C_{p}=80 f F, R_{d}=50 \Omega$
> Noise, jitter
- $\eta_{0}=8.20 E-9 V^{2} / G H z, S N R_{T X}=33 \mathrm{~dB}, \sigma_{\mathrm{RJ}}=0.01 \mathrm{UI}, \mathrm{A}_{\mathrm{DD}}=0.02 \mathrm{UI}, \mathrm{R}_{\mathrm{LM}}=0.95$
> Channels
- Publicly available 115 KR/CR channels at web page (see the detail in the back up)
> COM Tool version
- v2.54 (before Rich's speed up) and v2.56mod (after Rich's speed up)
- V2.56mod is expected to have same results as v2.57

> - For v2.56mod, "break" was changed to "continue" according to Rich's intention of speed-up fix
> Computer used for evaluation

- CPU Intel Core i5-8250U @ 1.60GHz 1.80GHz, Memory 8GB, OS Windows 10 Pro

Two-Phase Search vs Full-Grid Search

> Option A gave 100\% same results as the full-grid search
$>$ Option B gave $95 \%(219 / 230)$ same results as the full-grid search

- COM went up in 3 cases by up to 0.27 dB , and went down in 8 cases by up to 0.51 dB
- This is because EQs are optimized by FOM
- FOM went down in 11 cases by up to 0.16 dB , never went up

These results were completely same for v 2.54 and v 2.56 mod

Phase 1 (i.e. double step) vs Full-Grid Search

>COM value of Full-Grid Search is not necessarily the best

- In 7 out of 230 cases, phase 1 result was better by up to 0.3 dB
- In most (205 out of 230) cases, phase 1 result was worse by up to 0.9 dB
> Statistically, the COM value is likely improved with a finer step, but this is not always the case

These results were completely same for v 2.54 and v 2.56 mod

Discussion on Full-Grid Search: Do we really need it?

$>$ Two-phase search gives COM value close to the full-grid search

- We empirically verified that it is same for 230 cases with option A
- Theoretically, two-phase search may be still sub optimal
$>$ However, full-grid search does not necessarily give the best COM as well
- Because EQ parameters are optimized by FOM
$>$ With two-phase search, we may choose a higher COM value from results of phase 1 and phase 2
- This COM value may be higher than COM value by the full-grid search
- This option is not possible for the full-grid search, unless we optimize EQ parameters by COM instead of FOM
> Although two-phase search does not necessarily give the same result as the full-grid search, that is likely the case, and the phase 1 result may give a higher COM value than the full-grid search

Measured Exec Time with Overhead

$>$ Average speed up is $2.64 x$ (option A) or $3.29 x$ (option B) for $v 2.54$

- Or 3.66x (option A) or $4.22 x$ (option B) when combined with Rich's speed up

	Measured Execution Time with Overhead (min)						Speed up (vs FG254)				
							by RM FG256	by Two phase		Combined	
	FG254	FG256	A254	B254	A256m	B256m		A254	B254	A256m	B256m
max	37.47	18.22	15.70	13.63	11.74	10.76	3.59x	3.69x	5.96x	5.34x	6.41x
min	3.88	3.38	1.56	1.22	1.37	1.11	0.95x	1.98x	2.32x	2.79x	2.91x
average	16.56	7.70	6.27	5.04	4.52	3.93	2.15x	2.64x	3.29x	3.66x	4.22x

Breakdown of Execution Time (v2.54)

$>$ Measured execution time with overhead

- Full grid 994s
- Option A 376s (2.64x)
- Option B 302s (3.29x)

$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	FOM 12mm				$\mathrm{COM}$$12 \mathrm{~mm}$		FOM 30mm				$\begin{gathered} \mathrm{COM} \\ 30 \mathrm{~mm} \end{gathered}$
40.0s	465.2s				6.6 s		475.1s				7.0s
$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{aligned} & \text { P1 FOM } \\ & 12 \mathrm{~mm} \end{aligned}$	$\begin{gathered} \hline \mathrm{P} 1 \mathrm{COM} \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P2 FOM } \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { P2 COM } \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{aligned} & \text { P1 FOM } \\ & 30 \mathrm{~mm} \end{aligned}$	Pi COM 30 mm	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P2 FOM } \\ 30 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \text { P2 COM } \\ & 30 \mathrm{~mm} \end{aligned}$
40.0s	39.8 s	6.6 s	40.0s	57.5s	6.6 s	40.0s	39.5s	7.0s	40.0s	52.0s	7.0s
$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{aligned} & \text { P1 FOM } \\ & 12 \mathrm{~mm} \end{aligned}$	$\begin{gathered} \hline \mathrm{P} 1 \mathrm{COM} \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	P2 FOM 12mm	$\begin{array}{\|c} \hline \text { P2 COM } \\ 12 \mathrm{~mm} \end{array}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P1 FOM } \\ 30 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{P}_{1} \mathrm{COM} \\ 30 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P2 FOM } \\ 30 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \text { P2 COM } \\ 30 \mathrm{~mm} \end{gathered}$
40.0s	39.8s	6.6 s	40.0s	18.6s	6.6 s	40.0s	39.6s	7.0s	40.0s	16.9s	7.0s

- Estimated execution time without overhead
- Full grid

Load S4P files	FOM 12mm	$\begin{aligned} & \mathrm{COM} \\ & 12 \mathrm{~mm} \end{aligned}$	FOM 30mm	$\begin{gathered} \mathrm{COM} \\ 30 \mathrm{~mm} \end{gathered}$
40.0s	198.1s	6.5 s	212.4 s	6.8 s

- Option A 242s (4.10x)

| Load | P1 FOM | P2 FOM | COM | P1 FOM | P2 FOM | COM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S4P files | 12 mm | 12 mm | 12 mm | 30 mm | 30 mm | 30 mm |
| 40.0 s | 39.8 s | 57.5 s | 6.6 s | 39.5 s | 52.0 s | 7.0 s |

- Option B 168s (5.90x)

| Load | P1 FOM | P2 FOM | COM | P1 FOM | P2 FOM | COM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S4P files | 12 mm | Pmm
 12 mm | 30 mm | 12mm | 30 mm | |
| 40.0 s | 39.8 s | 18.6 s | 6.6 s | 39.6 s | 16.9 s | 7.0 s |

Breakdown of Execution Time (v2.56mod)

$>$ Measured execution time with overhead

- Full grid 462s (2.15x)
- Option A 271s (3.66x)
- Option B 236s (4.22x)

$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	FOM 12mm				$\begin{gathered} \mathrm{COM} \\ 12 \mathrm{~mm} \end{gathered}$		FOM 30mm				$\begin{gathered} \mathrm{COM} \\ 30 \mathrm{~mm} \end{gathered}$
38.5s	198.1s				6.5s		212.4 s				6.8 s
$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P1 FOM } \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \mathrm{P} 1 \mathrm{COM}^{12 \mathrm{~mm}} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P2 FOM } \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { P2 COM } \\ 12 \mathrm{~mm} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P1 FOM } \\ 30 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \mathrm{P} 1 \mathrm{COM}_{30 \mathrm{~mm}} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P2 FOM } \\ \text { 30mm } \end{gathered}$	$\begin{gathered} \hline \text { P2 COM } \\ 30 \mathrm{~mm} \end{gathered}$
38.5 s	17.5s	6.4 s	38.5s	29.1 s	6.5 s	38.5 s	17.4s	6.8 s	38.5 s	26.7s	6.8 s
$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P1 FOM } \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \mathrm{P} 1 \mathrm{COM} \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P2 FOM } \\ 12 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { P2 COM } \\ 12 \mathrm{~mm} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P1 FOM } \\ \text { 30mm } \end{gathered}$	$\begin{gathered} \hline \mathrm{P}_{1} \mathrm{COM} \\ 30 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { S4P files } \end{gathered}$	$\begin{gathered} \text { P2 FOM } \\ 30 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \text { P2 COM } \\ 30 \mathrm{~mm} \end{gathered}$
38.5s	17.6s	6.4 s	38.5 s	10.4s	6.5 s	38.5 s	17.4s	6.8 s	38.5s	9.5 s	6.8 s

$>$ Estimated execution time without overhead

- Full grid 462s (2.15x)
$\begin{array}{ccccc}\text { Load } \\
\text { S4P files }\end{array} \quad$ FOM 12mm \(\left.\begin{array}{c}COM

12 \mathrm{~mm}\end{array}\right]\) FOM 30mm | COM |
| :---: |
| 38.5 s |

- Option A 143s (6.97x)

| Load | P1 FOM | P2 FOM | COM | P1 FOM | P2 FOM | COM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S4P files | 12 mm | 12 mm | 12 mm | 30 mm | 30 mm | 30 mm |
| 38.5 s | 17.5 s | 29.1 s | 6.5 s | 17.4 s | 26.7 s | 6.8 s |

- Option B 107s (9.32x)

| Load | P1 FOM | P2 FOM | COM | P1 FOM | P2 FOM | COM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S4P files | 12 mm | 12 mm | 12 mm | 30 mm | 30 mm | 30 mm |
| 38.5 s | 17.6 s | 10.4 s | 6.5 s | 17.4 s | 9.5 s | 6.8 s |

Estimated Exec Time without Overhead

$>$ Average speed up will be 4.10x (option A) or $5.90 x$ (option B) for v2.54

- Or 6.97x (option A) or $9.32 x$ (option B) when combined with Rich's speed up

	Estimated Execution Time without Overhead (min)						Speed up (vs FG254)				
							by RM FG256	by Two phase		Combined	
	FG254	FG256	A254	B254	A256m	B256m		A254	B254	A256m	B256m
max	37.47	18.22	9.80	7.29	5.65	4.69	3.59x	5.21x	7.49x	9.11x	12.82x
min	3.88	3.38	1.00	0.66	0.85	0.58	0.95x	3.01x	4.57x	4.04x	6.70x
average	16.56	7.70	4.04	2.81	2.38	1.78	2.15x	4.10x	5.90x	6.97x	9.32x

Execution Time by RX Model

> DFE-based model is much faster than FFE-based

- FFE-based execution time increases with \# of taps
- DFE-based model is $4.4 x$ faster than FFE-based with 24 post taps

$>$ Both DFE- and FFE-based models will achieve speed up

\#n: n-tap DFE or 3-pre/n-post FFE
This is average exec time for $\mathrm{CH} 3, \mathrm{CH} 76, \mathrm{CH} 89$ with one case of package trace lengths using COM tool v2.56mod

This is estimated exec time without overhead.

Summary

$>$ Two-phase search will speed up COM tool by 4.10x ~ 5.90x

- Option A
- 100% same results as conventional full-grid search
- 4.10x speed up by two-phase search
- $6.97 x$ speed up combined with RM's speed up
- Option B
- 95% same results as conventional full-grid search
- COM may go up or down, because EQs are optimized by FOM
- $5.90 x$ speed up by two-phase search
- $9.32 x$ speed up combined with RM's speed up
> Small variation of COM has been existing due to FOM-based optimization
- Two-phase search does not introduce extra variation for all channels simulated
> DFE-based model is observed to be much faster than FFE-based model
CrędŐ

Back up

Channels Used for Simulation

＞Simulation was done for the following publicly available 115 KR／CR channels

CH \＃	Group	Description	Reference Document
$1-2$	RM1	Two Very Good 28dB Loss Ideal Transmission Lines	mellitz＿3ck＿adhoc＿02＿072518．pdf
$3-8$	RM2	24／28／32dB Cabled Backplane Channels including Via	mellitz＿3ck＿adhoc＿02＿081518．pdf
$9-10$	RM3	Synthesized CR Channels（2．0m and 2．5m 28AWG Cable）	mellitz＿100GEL＿adhoc＿01＿021218．pdf
$11-13$	RM4	Best Case 3＂，13＂，18＂Tachyon Backplane	mellitz＿100GEL＿adhoc＿01＿010318．pdf
$14-15$	NT1	Orthogonal or Cabled Backplane Channels	tracy＿100GEL＿03＿0118．pdf
16	AZ1	Orthogonal Backplane Channel	zambell＿100GEL＿01a＿0318．pdf
$17-19$	HH1	Initial Host 30dB Backplane Channel Models	heck＿100GEL＿01＿0118．pdf
$20-35$	HH2	16／20／24／28dB Cabled Backplane Channels	heck＿3ck＿01＿1118．pdf
$36-54$	UK1	Measured Traditional Backplane Channels	kareti＿3ck＿01a＿1118．pdf
$55-73$	UK2	Measured Cabled Backplane Channels	
$74-88$	UK3	Measured Orthogonal Backplane Channels	zambell＿3ck＿01＿1118．pdf
$89-115 ~$	AZ2	Measured Orthogonal Backplane with Varied Impedances	

All channel data are taken from IEEE 100GEL Study Group and P802．3ck Task Force－Tools and Channels pages．
i．e．http：／／www．ieee802．org／3／100GEL／public／tools／index．html and http：／／www．ieee802．org／3／ck／public／tools／index．html

COM parameters (DFE16)

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f b	53.125	GBd	
f min	0.05	GHz	
Delta_f	0.01	GHz	
C_d	[1.1e-4 1.1e-4]	nF	[TX RX]
z_p select	[12]		[test cases to run]
z_p ${ }^{\text {(TX) }}$	[12 30; 1.8 1.8; 0 0; 000$]$	mm	[test cases]
z_p (NEXT)	[12 30; 1.81.8;0 0;0 0]	mm	[test cases]
z_p (FEXT)	[12 30; 1.81.8;0 0;0 0]	mm	[test cases]
z_p (RX)	[12 30; 1.81.8;0 0; 00]	mm	[test cases]
C_p	[0.8e-40.8e-4]	nF	[TX RX]
C_v	[00]	nF	[TX RX]
R_0	50	Ohm	
R_d	[50 50]	Ohm	[TX RX]
A_V	0.41	V	
A_fe	0.41	V	
A_ne	0.6	V	
L	4		
M	32		
filter and Eq			
f_r	0.75	*fb	
$\mathrm{c}(0)$	0.54		min
$\mathrm{c}(-1)$	[-0.34:0.02:0]		[min:step:max]
$\mathrm{c}(-2)$	[0:0.02:0.12]		[min:step:max]
c(-3)	[-0.06:0.02:0]		[min:step:max]
c(-4)	[0]		[min:step:max]
c (1)	[-0.1:0.05:0]		[min:step:max]
N_b	16	UI	
b_max(1)	0.85		
b_max(2..N_b)	0.2		
g_DC	[-20:1:0]	dB	[min:step:max]
f_z	21.25	GHz	
f_p1	21.25	GHz	
f_p2	53.125	GHz	
g_DC_HP	[-6:1:0]		[min:step:max]
f_HP_PZ	0.6640625	GHz	
ffe_pre_tap_len	0	UI	
ffe_post_tap_len	0	UI	
Include PCB	0	logical	

$\because: 0^{\circ}$

Algorithm Option A (min 5 grids)

```
> Phase 1
step = org_step; max = org_max; min = org_min;
nseg = round( (org_max - org_min) / org_step );
if (nseg > 4)
    step = org_step * 2; % double the step size
end
> Phase 2
    step = org_step; max = org_max; min = org_min;
nseg = round( (org_max - org_min) / org_step );
if (nseg > 4)
        qnseg = ceil( nseg / 4 ); % round up to the same or upper integer
        min = max(org_min, phase1_result - org_step * qnseg);
        max = min(org_max, phase1_result + org_step * qnseg);
    end
```


Algorithm Option B (min 3 grids)

```
> Phase 1
step = org_step; max = org_max; min = org_min;
nseg = round( (org_max - org_min) / org_step );
if (nseg > 4)
    step = org_step * 2; % double the step size
end
> Phase 2
    step = org_step; max = org_max; min = org_min;
nseg = round( (org_max - org_min) / org_step );
if (nseg > 4)
        qnseg = floor( nseg / 4 ); % round down to the same or lower integer
        min = max(org_min, phase1_result - org_step * qnseg);
        max = min(org_max, phase1_result + org_step * qnseg);
    end
```


Difference between Full-grid Search and Option B

$\begin{gathered} \text { PKG } \\ \text { zp } \end{gathered}$	CH \#	Total IL	Fitted IL	ICN mV	TX FIR		gDC		gDC2		FOM			COM		
					Full Grid	Option B	FG	OB	FG	OB	Full Grid	Opt. B	OB - FG	Full Grid	Opt. B	OB - FG
12	6	29.19	22.98	0.88	[-0.02 0.08-0.24 0.66 0]	[0 0.04-0.2 0.76 0]	-10	-10	-3	-3	16.7815	16.7263	-0.0552	6.3031	6.1431	-0.1600
	28	32.02	25.11	1.60	[-0.02 0.08-0.26 0.64 0]	[0 0.04-0.22 0.74 0]	-11	-12	-2	-2	15.1575	14.9940	-0.1635	4.7614	4.4805	-0.2809
	39	29.82	20.95	1.77	[-0.02 0.08-0.26 0.64 0]	[0 0.04-0.22 0.74 0]	-7	-8	-2	-2	12.9105	12.8301	-0.0804	2.9139	2.5452	-0.3687
	44	34.64	25.54	1.77	[0 0.04-0.22 0.74 0]	[-0.02 0.08-0.26 0.64 0]	-11	-10	-3	-3	11.9066	11.7440	-0.1626	2.1359	2.4066	0.2707
	54	45.31	35.09	1.77	[0 0.04-0.24 0.72 0]	[0 0.02-0.22 0.76 0]	-17	-17	-4	-4	7.8329	7.7267	-0.1062	-0.82785	-1.3414	-0.51355
30	1	35.14	28.01	0.00	[-0.02 0.08-0.24 0.66 0]	[0 0.04-0.2 0.71-0.05]	-19	-19	-2	-2	15.1463	15.1367	-0.0096	3.9172	3.9172	0.0000
	13	37.73	30.34	2.65	[0 $0.04-0.280 .68$ 0]	[0 0.02-0.26 0.72 0]	-16	-18	-3	-3	8.2306	8.2003	-0.0303	-1.4008	-1.4817	-0.0809
	26	23.83	17.82	2.26	$[-0.020 .08-0.240 .61-0.05]$	[0 0.04-0.22 0.74 0]	-8	-10	-2	-2	14.842	14.7685	-0.0735	4.1102	3.8900	-0.2202
	33	36.35	29.42	1.55	[-0.02 0.08-0.26 0.64 0]	[-0.02 0.08-0.26 0.64 0]	-17	-17	-4	-3	11.8882	11.8771	-0.0111	1.1499	1.1202	-0.0297
	48	36.97	27.52	1.77	[0 $0.04-0.240 .720]$	[0 0.06-0.26 0.68 0]	-15	-15	-4	-3	11.0199	10.9512	-0.0687	1.4218	1.5975	0.1757
	76	30.98	24.34	1.12	[-0.02 0.08-0.26 0.64 0]	[0 0.04-0.22 0.74 0]	-13	-14	-4	-4	12.7397	12.5900	-0.1497	2.1359	1.8518	-0.2841

Better results of Phase 1 than Full-Grid Search

$\begin{array}{\|l} \text { PKG } \\ \text { zp } \end{array}$	CH \#	Total IL	Fitted IL	ICN mV	TX FIR		gDC		gDC2		FOM			COM		
					Full Grid	Phase 1	FG	P1	FG	P1	Full Grid	Phase 1	P1-FG	Full Grid	Phase 1	P1-FG
12	10	33.61	27.84	1.91	[0 0.02-0.2 0.780]	[0 0.04-0.22 0.740]	-13	-14	-3	-4	11.4581	11.3270	-0.1311	1.7556	1.8196	0.0640
	17	38.31	29.74	2.05	[0 0.06-0.26 0.68 0]	[-0.02 0.08-0.26 0.64 0]	-14	-14	-2	-2	10.8454	10.6599	-0.1855	1.5144	1.5975	0.0831
	18	37.57	29.62	2.03	[0 0.06-0.26 0.68 0]	[-0.02 0.08-0.26 0.64 0]	-14	-14	-2	-2	10.8957	10.6698	-0.2259	1.6184	1.6815	0.0631
	44	34.64	25.54	1.77	[00.04-0.22 0.74 0]	[-0.02 0.08-0.26 0.64 0]	-11	-10	-3	-2	11.9066	11.6283	-0.2783	2.1359	2.1804	0.0445
	46	36.12	27.09	1.77	[0 0.06-0.30.64 0]	[-0.02 0.08-0.3 0.6 0]	-9	-10	-3	-2	10.1452	9.9526	-0.1926	0.50056	0.54669	0.04613
	88	40.48	33.04	0.69	[0 0.06-0.26 0.68 0]	[-0.02 0.08-0.26 0.64 0]	-15	-16	-4	-4	11.3821	11.2469	-0.1352	0.91515	0.92481	0.00966
30	48	42.16	27.52	1.77	[00.04-0.24 0.72 0]	[-0.02 0.08-0.26 0.64 0]	-15	-14	-4	-4	11.0199	10.8494	-0.1705	1.4218	1.7237	0.3019

