• CrędŐ

Two-Phase Grid Search for Fast COM Calculation IEEE P802.3ck Task Force Ad Hoc, 12/12/2018

- - Yasuo Hidaka, Phil Sun
 - Credo Semiconductor

Introduction

> COM calculation time is mainly contributed by

- Computation iteration for TX FIR taps, CTLE curves, low-frequency CTLE
- FFE-based model needs extra computation for inversion of large matrix
 - For each grid of FOM optimization, inversion of NxN matrix is required for N-tap RX FFE
 - Computation cost of NxN matrix is O(N³)

> We evaluated a two-phase grid search algorithm to look for much faster COM calculation

Credo Semiconductor

Two-Phase Grid Search for fast FOM Optimization

Full-Grid Search (Conventional)

- Check all values
- Ex) min / step / max = -0.30 / 0.02 / 0.00

IEEE P802.3ck 100Gb/s, 200Gb/s, and 400 Gb/s Electrical Interface Task Force

Aggressive vs Conservative Range Reduction in Phase 2

of Grids by Conservative Range Reduction

\succ For each parameter,

- # of grids in phase 1 is about half, because of double step
- # of grids in phase 2 is about half, because of half range
- Hence, total # of grids for each parameter does not change from the full-grid search

 \succ For multiple (e.g. 4) parameters,

• Total # of grids in phase 1 is about $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$ because of double step

• Total # of grids in phase 2 is about $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$ because of half range

• Hence, total # of grids for 4 parameters is about $\left(\frac{1}{2}\right)^4 \times 2 = \frac{1}{8}$ of the full-grid search

 \succ Namely, although the # of grids for each parameter does not change, total # of grids for N parameters will reduce by a factor of $\frac{1}{2^{(N-1)}}$

Requirements for Min # of Grids and Options

 \succ We applied the algorithm only to parameters with \geq 6 grids

- With \leq 5 grids (i.e. \leq 4 segments), check all full grids in phase 1 and 2
- Ex) min / step / max = -0.10 / 0.02 / 0.00 (example of min # of grids)

-0.10 -0.08 -0.06 -0.04 -0.02

IEEE P802.3ck 100Gb/s, 200Gb/s, and 400 Gb/s Electrical Interface Task Force

h ≥ 6 grids s in phase 1 and 2 of min # of grids)

Experimental Implementation

- \succ In order to evaluate how close results we can get to the full-grid search, we experimentally implemented the algorithm as a wrapping function
 - The wrapping function calls the COM tool function for multiple times
 - For each phase
 - For each package length
 - It has unnecessary overhead
 - S-parameter files are loaded and analyzed for multiple times
 - COM value for phase 1 is unnecessarily calculated

> Once we have consensus, we can work on the full implementation

Credo Semiconductor 6

Evaluation Conditions

Equalizer configuration

- RX model
 - DFE-based model (b1max = 0.85, Nb=16 for all conditions, Nb=20/24/28 for limited conditions)
 - FFE-based model (b1max = 0.7, Nb=1, pre=3, post=16/20/24/28 for limited conditions)
- TX FIR tap range
 - $c(-3) \in [-0.06:0.02:0], c(-2) \in [0:0.02:0.12], c(-1) \in [-0.34:0.02:0], c(1) \in [-0.1:0.05:0]$
 - $c(0) \ge 0.54$
- RX CTLE
 - gDC ∈ [-20:0], gDC2 ∈ [-6:0]
- Package Model (Tx and Rx)
 - $z_p = 12$ mm or 30mm, $C_d = 110$ fF, $C_p = 80$ fF, $R_d = 50\Omega$
- > Noise, jitter
 - $\eta_0 = 8.20E 9V^2/GHz$, SNR_{TX}=33dB, $\sigma_{R,I} = 0.01UI$, $A_{DD} = 0.02UI$, $R_{IM} = 0.95$
- > Channels
 - Publicly available 115 KR/CR channels at web page (see the detail in the back up)
- COM Tool version
 - v2.54 (before Rich's speed up) and v2.56mod (after Rich's speed up)
 - V2.56mod is expected to have same results as v2.57
 - For v2.56mod, "break" was changed to "continue" according to Rich's intention of speed-up fix
- Computer used for evaluation
 - CPU Intel Core i5-8250U @ 1.60GHz 1.80GHz, Memory 8GB, OS Windows 10 Pro

Two-Phase Search vs Full-Grid Search

> Option A gave 100% same results as the full-grid search > Option B gave 95% (219/230) same results as the full-grid search

- COM went up in 3 cases by up to 0.27dB, and went down in 8 cases by up to 0.51dB
 - This is because EQs are optimized by FOM
 - FOM went down in 11 cases by up to 0.16dB, never went up

Phase 1 (i.e. double step) vs Full-Grid Search

> COM value of Full-Grid Search is not necessarily the best

- In 7 out of 230 cases, phase 1 result was better by up to 0.3dB
- In most (205 out of 230) cases, phase 1 result was worse by up to 0.9dB
- \succ Statistically, the COM value is likely improved with a finer step, but this is not always the case

Discussion on Full-Grid Search: Do we really need it?

- > Two-phase search gives COM value close to the full-grid search
 - We empirically verified that it is same for 230 cases with option A
 - Theoretically, two-phase search may be still sub optimal
- > However, full-grid search does not necessarily give the best COM as well
 - Because EQ parameters are optimized by FOM
- > With two-phase search, we may choose a higher COM value from results of phase 1 and phase 2
 - This COM value may be higher than COM value by the full-grid search This option is not possible for the full-grid search, unless we optimize EQ parameters
 - by COM instead of FOM
- \succ Although two-phase search does not necessarily give the same result as the full-grid search, that is likely the case, and the phase 1 result may give a higher COM value than the full-grid search

Measured Exec Time with Overhead

Average speed up is 2.64x (option A) or 3.29x (option B) for v2.54

Or 3.66x (option A) or 4.22x (option B) when combined with Rich's speed up

	Maa	surad Eva	cution Tir	na with O	workood (min	Speed up (vs FG254)							
	IVIEd	isureu exe		ne with O	verneau (by RM	by Two	phase	Combined				
	FG254	FG256	A254	B254	A256m	B256m	FG256	A254	B254	A256m	B256m			
max	37.47	18.22	15.70	13.63	11.74	10.76	3.59x	3.69x	5.96x	5.34x	6.41x			
min	3.88	3.38	1.56	1.22	1.37	1.11	0.95x	1.98x	2.32x	2.79x	2.91x			
average	16.56	7.70	6.27	5.04	4.52	3.93	2.15x	2.64x	3.29x	3.66x	4.22x			

Breakdown of Execution Time (v2.54)

Measured execution time with overhead

- Full grid 994s
- Option A 376s (2.64x)
- Option B 302s (3.29x)

Load S4P files		FO	M 12mm		CC 121	COMFOM 30mm12mm12mm					
40.0s		4	65.2s		6.	6s		475.1	7.0s		
Load S4P files	P1 FOM 12mm	P1 COM 12mm	Load S4P files	P2 FOM 12mm	P2 COM 12mm	Load S4P files	P1 FOM 30mm	P1 COM 30mm	Load S4P files	P2 FOM 30mm	P2 COM 30mm
40.0s	39.8s	6.6s	40.0s	57.5s	6.6s	40.0s	39.5s	7.0s	40.0s	52.0s	7.0s
Load S4P files	P1 FOM 12mm	P1 COM 12mm	Load S4P files	P2 FOM 12mm	P2 COM 12mm	Load S4P files	P1 FOM 30mm	P1 COM 30mm	Load S4P files	P2 FOM 30mm	P2 COM 30mm
40.0s	39.8s	6.6s	40.0s	18.6s	6.6s	40.0s	39.6s	7.0s	40.0s	16.9s	7.0s

Estimated execution time without overhead

- Full grid 994s
- Option A 242s (4.10x)
- Option B 168s (5.90x)

Load S4P files		FOI	M 12mm		CC 12n	0M nm	FOM 30mm	COM 30mm
40.0s		1	98.1s		6.	วิร	212.4s	6.8s
Load S4P files	P1 FOM 12mm	P2 FOM 12mm	COM 12mm	P1 FOM 30mm	P2 FOM 30mm	COM 30mm		
40.0s	39.8s	57.5s	6.6s	39.5s	52.0s	7.0s		
Load S4P files	P1 FOM 12mm	P2 FOM 12mm	COM 12mm	P1 FOM 30mm	P2 FOM 30mm	COM 30mm		
40.0s	39.8s	18.6s	6.6s	39.6s	16.9s	7.0s	-	

Breakdown of Execution Time (v2.56mod)

Measured execution time with overhead

- Full grid
 462s (2.15x)
- Option A
 271s (3.66x)
- Option B
 236s (4.22x)

Load S4P files		FO	M 12mm		CC 121	COM 12mm FOM 30mm						
38.5s		1	98.1s		6.	6.5s 212.4s						
Load S4P files	P1 FOM 12mm	P1 COM 12mm	Load S4P files	P2 FOM 12mm	P2 COM 12mm	Load S4P files	P1 FOM 30mm	P1 COM 30mm	Load S4P files	P2 FOM 30mm	P2 COM 30mm	
38.5s	17.5s	6.4s	38.5s	29.1s	6.5s	38.5s	17.4s	6.8s	38.5s	26.7s	6.8s	
Load S4P files	P1 FOM 12mm	P1 COM 12mm	Load S4P files	P2 FOM 12mm	P2 COM 12mm	Load S4P files	P1 FOM 30mm	P1 COM 30mm	Load S4P files	P2 FOM 30mm	P2 COM 30mm	
38.5s	17.6s	6.4s	38.5s	10.4s	6.5s	38.5s	17.4s	6.8s	38.5s	9.5s	6.8s	

Estimated execution time without overhead

- Full grid
 462s (2.15x)
- Option A
 1/3s (6.97x)
- 143s (6.97x)
- Option B
 107s (9.32x)

Load S4P files		FOI	A 12mm		CC 12n	0M nm	FOM 30mm	COM 30mm
38.5s		19	98.1s		6.	5s	212.4s	6.8s
Load S4P files	P1 FOM 12mm	P2 FOM 12mm	COM 12mm	P1 FOM 30mm	P2 FOM 30mm	COM 30mm		
38.5s	17.5s	29.1s	6.5s	17.4s	26.7s	6.8s	-	
Load S4P files	P1 FOM 12mm	P2 FOM 12mm	COM 12mm	P1 FOM 30mm	P2 FOM 30mm	COM 30mm		
38.5s	17.6s	10.4s	6.5s	17.4s	9.5s	6.8s	-	

Estimated Exec Time without Overhead

> Average speed up will be 4.10x (option A) or 5.90x (option B) for v2.54

Or 6.97x (option A) or 9.32x (option B) when combined with Rich's speed up

	Ectim	atad Evac	ition Time	without	Overhead	(min)	Speed up (vs FG254)						
				ewithout	Overneau	(11111)	by RM	by Two	phase	Combined			
	FG254	FG256	A254	B254	A256m	B256m	FG256	A254	B254	A256m	B256m		
max	37.47	18.22	9.80	7.29	5.65	4.69	3.59x	5.21x	7.49x	9.11x	12.82x		
min	3.88	3.38	1.00	0.66	0.85	0.58	0.95x	3.01x	4.57x	4.04x	6.70x		
average	16.56	7.70	4.04	2.81	2.38	1.78	2.15 x	4.10 x	5.90x	6.97x	9.32x		

Execution Time by RX Model

DFE-based model is much faster than FFE-based

- FFE-based execution time increases with # of taps
- DFE-based model is 4.4x faster than FFE-based with 24 post taps
- Both DFE- and FFE-based models will achieve speed up

#n: n-tap DFE or 3-pre/n-post FFE

This is estimated exec time without overhead.

This is average exec time for CH3, CH76, CH89 with one case of package trace lengths using COM tool v2.56mod

Summary

\succ Two-phase search will speed up COM tool by 4.10x ~ 5.90x

- Option A
 - 100% same results as conventional full-grid search
 - 4.10x speed up by two-phase search
 - 6.97x speed up combined with RM's speed up
- Option B
 - 95% same results as conventional full-grid search
 - COM may go up or down, because EQs are optimized by FOM
 - 5.90x speed up by two-phase search
 - 9.32x speed up combined with RM's speed up

Small variation of COM has been existing due to FOM-based optimization

Two-phase search does not introduce extra variation for all channels simulated

DFE-based model is observed to be much faster than FFE-based model

Credo Semiconductor 16

Back up

IEEE P802.3ck 100Gb/s, 200Gb/s, and 400 Gb/s Electrical Interface Task Force

Credo Semiconductor 17

Channels Used for Simulation

Simulation was done for the following publicly available 115 KR/CR channels

CH #	Group	Description	Reference Document
1-2	RM1	Two Very Good 28dB Loss Ideal Transmission Lines	mellitz_3ck_adhoc_02_072518.pdf
3-8	RM2	24/28/32dB Cabled Backplane Channels including Via	mellitz_3ck_adhoc_02_081518.pdf
9-10	RM3	Synthesized CR Channels (2.0m and 2.5m 28AWG Cable)	mellitz_100GEL_adhoc_01_021218.pdf
11-13	RM4	Best Case 3", 13", 18" Tachyon Backplane	mellitz_100GEL_adhoc_01_010318.pdf
14-15	NT1	Orthogonal or Cabled Backplane Channels	tracy_100GEL_03_0118.pdf
16	AZ1	Orthogonal Backplane Channel	zambell_100GEL_01a_0318.pdf
17-19	HH1	Initial Host 30dB Backplane Channel Models	heck_100GEL_01_0118.pdf
20-35	HH2	16/20/24/28dB Cabled Backplane Channels	heck_3ck_01_1118.pdf
36-54	UK1	Measured Traditional Backplane Channels	
55-73	UK2	Measured Cabled Backplane Channels	kareti_3ck_01a_1118.pdf
74-88	UK3	Measured Orthogonal Backplane Channels	
89-115	AZ2	Measured Orthogonal Backplane with Varied Impedances	zambell_3ck_01_1118.pdf

All channel data are taken from IEEE 100GEL Study Group and P802.3ck Task Force – Tools and Channels pages. i.e. http://www.ieee802.org/3/100GEL/public/tools/index.html and http://www.ieee802.org/3/ck/public/tools/index.html

COM parameters (DFE16)

	Table 93A-1 parameters				I/O control			Table 93A–3 parameters				
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units			
f_b	53.125	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[0 1.0404e-3 4.201e-4]				
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	6.325E-03	ns/mm			
 Delta_f	0.01	GHz		RESULT_DIR	\results\100GEL_WG_{dat	te}\	package_Z_c	[87.5 87.5 ; 92.5 92.5; 100 100 ; 100 100]	Ohm (tdr sel)			
C_d	[1.1e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0 logical							
z_p select	[1 2]		[test cases to run]	Port Order	[1324]			Table 92–12 parameters				
z_p (TX)	[12 30; 1.8 1.8; 0 0; 0 0]	mm	[test cases]	RUNTAG	KR2 ev al1		Parameter	Setting				
z_p (NEXT)	[12 30; 1.8 1.8; 0 0; 0 0]	mm	[test cases]	COM_CONTRIBUTION	0 logical		board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]				
z_p (FEXT)	[12 30; 1.8 1.8; 0 0; 0 0]	mm	[test cases]	(Dperational		board_tl_tau	5.790E-03	ns/mm			
z_p (RX)	[12 30; 1.8 1.8; 0 0; 0 0]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	90	Ohm			
C_p	[0.8e-4 0.8e-4]	nF	[TX RX]	DER_0	1.00E-04		z_bp (TX)	115	mm			
C_v	[00]	nF	[TX RX]	Include PCB	0	Value	z_bp (NEXT)	115	mm			
	50	Ohm		T_r	6.16E-03	ns	z_bp (FEXT)	115	mm			
R_d	[50 50]	Ohm	[TX RX]	FORCE_TR	1	logical	z_bp (RX)	115	mm			
Av	0.41	V										
A_fe	0.41	V		TDR	and ERL options							
A_ne	0.6	V		TDR	1	logical						
L	4			ERL	1	logical						
М	32			ERL_ONLY	0	logical						
	filter and Eq			TR_TDR	0.01	ns						
f_r	0.75	*fb		Ν	1000							
c(0)	0.54		min	TDR_Butterworth	1	logical						
c(-1)	[-0.34:0.02:0]		[min:step:max]	beta_x	1.70E+09							
c(-2)	[0:0.02:0.12]		[min:step:max]	rho_x	0.18							
c(-3)	[-0.06:0.02:0]		[min:step:max]	fixture delay time	0							
c(-4)	[0]		[min:step:max]	Re	ceiver testing							
c(1)	[-0.1:0.05:0]		[min:step:max]	RX_CALIBRATION	0	logical						
N_b	16	UI		Sigma BBN step	5.00E-03	V						
b_max(1)	0.85											
b_max(2N_b)	0.2			I	Noise, jitter							
g_DC	[-20:1:0]	dB	[min:step:max]	sigma_RJ	0.01	UI						
f_z	21.25	GHz		A_DD	0.02	UI						
f_p1	21.25	GHz		eta_0	8.20E-09	V^2/GHz						
f_p2	53.125	GHz		SNR_TX	33	dB						
g_DC_HP	[-6:1:0]		[min:step:max]	R_LM	0.95							
f_HP_PZ	0.6640625	GHz										
ffe_pre_tap_len	0	UI										
ffe_post_tap_len	0	UI										
Include PCB	0	logical										

Algorithm Option A (min 5 grids)

Phase 1 step = org_step; max = org_max; min = org_min; nseg = round((org_max - org_min) / org_step); if (nseg > 4)step = org_step * 2; % double the step size end

Phase 2 step = org_step; max = org_max; min = org_min; nseg = round((org_max - org_min) / org_step); if (nseg > 4)qnseg = ceil(nseg / 4); % round up to the same or upper integer min = max(org_min, phase1_result - org_step * qnseg); max = min(org_max, phase1_result + org_step * qnseg); end

Algorithm Option B (min 3 grids)

Phase 1 step = org_step; max = org_max; min = org_min; nseg = round((org_max - org_min) / org_step); if (nseg > 4)step = org_step * 2; % double the step size end

Phase 2 step = org_step; max = org_max; min = org_min; nseg = round((org_max - org_min) / org_step); if (nseg > 4)qnseg = floor(nseg / 4); % round down to the same or lower integer min = max(org_min, phase1_result - org_step * qnseg); max = min(org_max, phase1_result + org_step * qnseg); end

Difference between Full-grid Search and Option B

PKG		Tatal	II Fitted II ICN mV		TX FIR		g[DC	gD	C2		FOM			СОМ	
zp		TOTALIT	FILLEGIL		Full Grid	Option B	FG	OB	FG	OB	Full Grid	Opt. B	OB - FG	Full Grid	Opt. B	OB - FG
	6	29.19	22.98	0.88	[-0.02 0.08 -0.24 0.66 0]	[0 0.04 -0.2 0.76 0]	-10	-10	-3	-3	16.7815	16.7263	-0.0552	6.3031	6.1431	-0.1600
	28	32.02	25.11	1.60	[-0.02 0.08 -0.26 0.64 0]	[0 0.04 -0.22 0.74 0]	-11	-12	-2	-2	15.1575	14.9940	-0.1635	4.7614	4.4805	-0.2809
12	39	29.82	20.95	1.77	[-0.02 0.08 -0.26 0.64 0]	[0 0.04 -0.22 0.74 0]	-7	-8	-2	-2	12.9105	12.8301	-0.0804	2.9139	2.5452	-0.3687
	44	34.64	25.54	1.77	[0 0.04 -0.22 0.74 0]	[-0.02 0.08 -0.26 0.64 0]	-11	-10	-3	-3	11.9066	11.7440	-0.1626	2.1359	2.4066	0.2707
	54	45.31	35.09	1.77	[0 0.04 -0.24 0.72 0]	[0 0.02 -0.22 0.76 0]	-17	-17	-4	-4	7.8329	7.7267	-0.1062	-0.82785	-1.3414	-0.51355
	1	35.14	28.01	0.00	[-0.02 0.08 -0.24 0.66 0]	[0 0.04 -0.2 0.71 -0.05]	-19	-19	-2	-2	15.1463	15.1367	-0.0096	3.9172	3.9172	0.0000
	13	37.73	30.34	2.65	[0 0.04 -0.28 0.68 0]	[0 0.02 -0.26 0.72 0]	-16	-18	-3	-3	8.2306	8.2003	-0.0303	-1.4008	-1.4817	-0.0809
20	26	23.83	17.82	2.26	[-0.02 0.08 -0.24 0.61 -0.05]	[0 0.04 -0.22 0.74 0]	-8	-10	-2	-2	14.842	14.7685	-0.0735	4.1102	3.8900	-0.2202
50	33	36.35	29.42	1.55	[-0.02 0.08 -0.26 0.64 0]	[-0.02 0.08 -0.26 0.64 0]	-17	-17	-4	-3	11.8882	11.8771	-0.0111	1.1499	1.1202	-0.0297
	48	36.97	27.52	1.77	[0 0.04 -0.24 0.72 0]	[0 0.06 -0.26 0.68 0]	-15	-15	-4	-3	11.0199	10.9512	-0.0687	1.4218	1.5975	0.1757
7	76	30.98	24.34	1.12	[-0.02 0.08 -0.26 0.64 0]	[0 0.04 -0.22 0.74 0]	-13	-14	-4	-4	12.7397	12.5900	-0.1497	2.1359	1.8518	-0.2841

Better results of Phase 1 than Full-Grid Search

PKG		#Total IL	Fitted IL		TX F	IR	g[C	gD	C2		FOM			СОМ	
zp		TOLATIL			Full Grid	Phase 1	FG	P1	FG	P1	Full Grid	Phase 1	P1 – FG	Full Grid	Phase 1	P1 – FG
	10	33.61	27.84	1.91	[0 0.02 -0.2 0.78 0]	[0 0.04 -0.22 0.74 0]	-13	-14	-3	-4	11.4581	11.3270	-0.1311	1.7556	1.8196	0.0640
	17	38.31	29.74	2.05	[0 0.06 -0.26 0.68 0]	[-0.02 0.08 -0.26 0.64 0]	-14	-14	-2	-2	10.8454	10.6599	-0.1855	1.5144	1.5975	0.0831
12	18	37.57	29.62	2.03	[0 0.06 -0.26 0.68 0]	[-0.02 0.08 -0.26 0.64 0]	-14	-14	-2	-2	10.8957	10.6698	-0.2259	1.6184	1.6815	0.0631
	44	34.64	25.54	1.77	[0 0.04 -0.22 0.74 0]	[-0.02 0.08 -0.26 0.64 0]	-11	-10	-3	-2	11.9066	11.6283	-0.2783	2.1359	2.1804	0.0445
	46	36.12	27.09	1.77	[0 0.06 -0.30.64 0]	[-0.02 0.08 -0.3 0.6 0]	-9	-10	-3	-2	10.1452	9.9526	-0.1926	0.50056	0.54669	0.04613
	88	40.48	33.04	0.69	[0 0.06 -0.26 0.68 0]	[-0.02 0.08 -0.26 0.64 0]	-15	-16	-4	-4	11.3821	11.2469	-0.1352	0.91515	0.92481	0.00966
30	48	42.16	27.52	1.77	[0 0.04 -0.24 0.72 0]	[-0.02 0.08 -0.26 0.64 0]	-15	-14	-4	-4	11.0199	10.8494	-0.1705	1.4218	1.7237	0.3019

