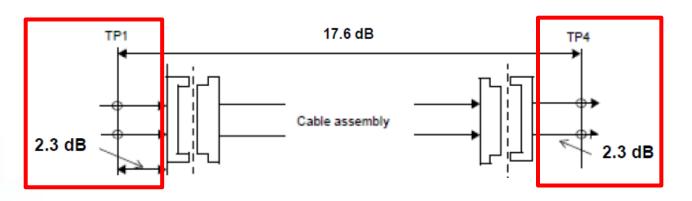

# 100GEL Cable Assembly Characteristics -06

Sam Kocsis

## **Proposed Cu Cable Spec**




- Proposal based on the following assumptions
  - 2.3dB (@26.56GHz) for MCB IL
  - 1.5dB MAX (@26.56GHz) for Connector IL
  - 10.0dB for Cu Cable Assembly
- Cu Cable Assembly (expectations)
  - (2)pcs PCB paddle card, wire attachment, bulk cable
  - 2m bulk cable reach

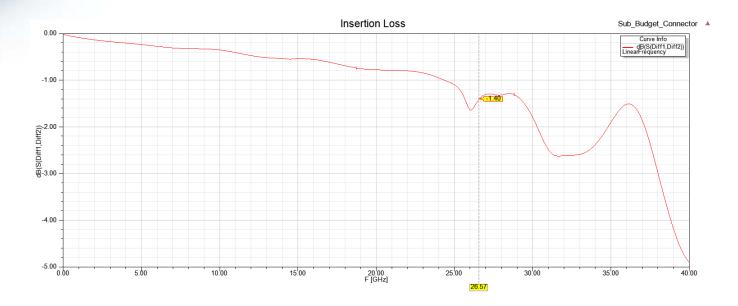
# **Budget Allocation - MCB**

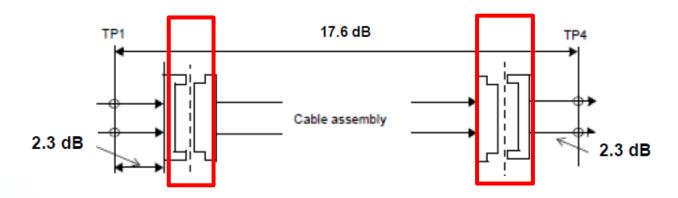
IL = 2.15dB

abcdeighijklynni






2/12/2019

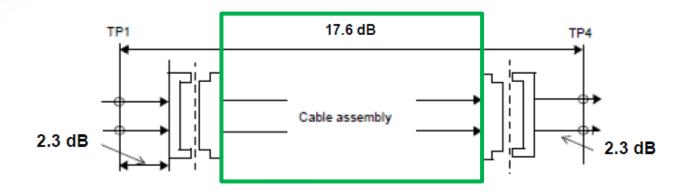

**Amphenol** 

## **Budget Allocation - Connector**

IL = 1.40dB

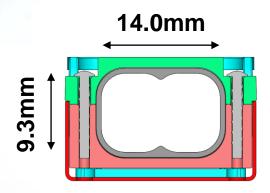
abcdefghijkumni

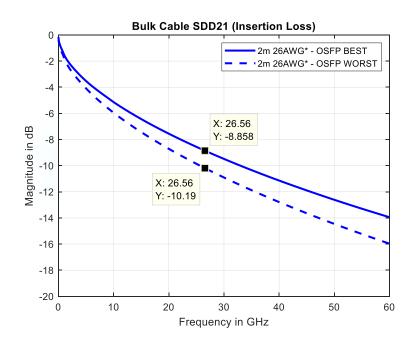





2/12/2019

**Amphenol** 


# **Budget Allocation – Cable Assembly**


IL = 10.5dB



- Cu Cable Assembly (expectations)
  - (2)pcs PCB paddle card, wire attachment, bulk cable
  - 2m bulk cable reach
- Assembly needs to be a functional external cable design
- Bulk wire needs to fit into SFP, SFP-DD, DSFP, QSFP, QSFP-DD, OSFP modules (OSFP shown as example)
- Paddle card needs to be manufacturable

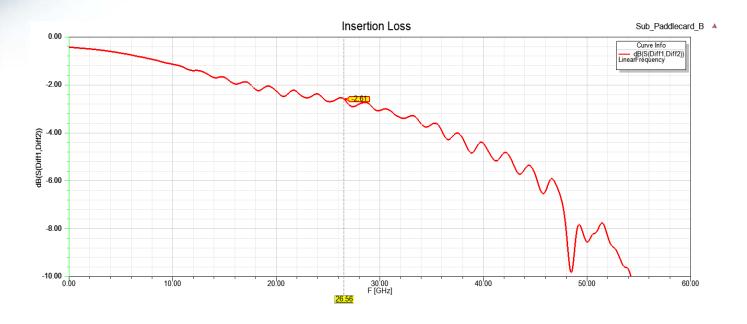
#### **Bulk Cable Models**



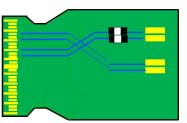


- "26AWG\* " term defines the largest physical wire that can fit into OSFP
- "BEST" term represents the best achievable bulk cable process
- "WORST" term represents latest manufacturing tolerance
  - Pair-to-Pair deviation, "some" temperature variation

#### **TP1-TP4 Budget**


- Case A (OSFP Best-Case)
  - 2.15dB + 1.40dB + 8.86dB + 1.40dB + 2.15dB = 15.96dB
- Case B (OSFP Worst-Case)
  - 2.15dB + 1.40dB + 10.19dB + 1.40dB + 2.15dB = 17.29dB

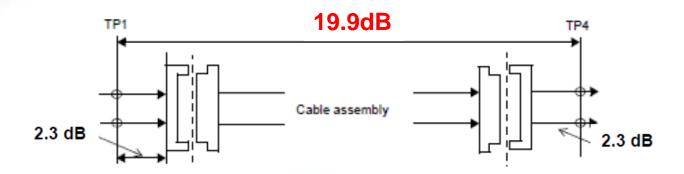
- Simulation models meet the proposed 802.3ck spec for IL
- No allocation assigned for paddlecard or wire attachment
- Budget allocations above give all of the cable assembly budget to the bulk cable
- Will the paddlecard design significantly impact the spec?


#### **Paddlecard Models**



abcdefohikunn




- Data shown as typical case for combined path (TX+RX) in a single link
- Paddlecard characteristics are not negligible for 100GEL
  - PCB Etch (Stripline and Microstrip)
  - Transition Vias
  - AC Caps
  - Wire Attachment



## **TP1-TP4 Budget (w/ Paddlecard)**

- Case A (OSFP Best-Case)
  - 2.15dB + 1.40dB + (8.86dB + 2.61dB) + 1.40dB + 2.15dB = 18.56dB
- Case B (OSFP Worst-Case)
  - 2.15dB + 1.40dB + (10.19dB + 2.61dB) + 1.40dB + 2.15dB = 19.90dB
- Simulation models do not meet the proposed 802.3ck spec for IL
- More realistic models for bulk cable and paddlecard show significant impact on performance
- Should other parameters be included in the analysis?
  - Additional manufacturing tolerances, cable stress, temperature, etc.

#### **Recommended Cu Cable Spec**



- Based on OSFP analysis, it is recommended to change the TP1-TP4 requirement to <u>at least</u> 19.9dB
  - 2.3dB (@26.56GHz) for MCB IL
  - 1.5dB MAX (@26.56GHz) for Connector IL
  - 12.3dB for Cu Cable Assembly
- Impact to TP0-TP5 would be total IL of 30.3dB (@26.56GHz)
  - Assuming no other changes to the channel characteristics

#### Summary

- TP1-TP4 models showed higher IL than previously requested
- Current technology for bulk cable and paddlecard exceed the allowable budget
- COM analysis was not completely pessimistic, but depends on the settings in the COM spreadsheet
- Channels Fail IL, but Pass COM
- Before presenting a full dataset for possible channels and relevant IL, COM, ERL characteristics, we would like to see agreement on a COM script and format
- Recommend the group to consider options for extending the IL requirement for TP1-TP4