MARVELL®

Measuring Transmitter Compliance Parameters @ a varying TP0a

Liav Ben Artsi IEEE 802.3ck ad-hoc February – 2020

Problem Statement

- Transmitter (Tx) parameters were historically defined in electrical specifications @ the device package ball referred to as TP0
- TP0 is usually inaccessible for direct measurement → Measuring device transmitter compliancy @ TP0 required one of the following solutions:
 - 1. Physically accessing the measurement point @ TP0 by means of "picoprobing", or other "creative" structure
 - 2. Connecting TP0 (the device ball/pin) to a "distant" location (TP0a) with a transmission line and vias according to what is "structurally" required. Measuring the Tx at TP0a and performing mathematical de-embedding to check compliancy of parameters vs. those defined @ TP0. De-embedding is an extremely challenging mathematical task which easily introduces measurement inaccuracies threatening the validity of the whole compliancy measurement

Problem Statement – Cont.

 To address challenges of measuring Tx parameters @TP0, the measurement structure connecting TP0 with TP0a was defined within a range of loss, loss variance and return loss/effective return loss (originally done in 802.3bj).

The Tx compliance parameters were redefined @ TP0a according to the Tx test fixture parameters

- Definition of Tx parameters @ TP0a was followed by 802.3by, 802.3bs, 802.3cd
- 802.3ck introduced higher signal BW due to the increased lane rate of 100Gbps@ PAM4, thus making TP0-TP0a test fixture definition challenging

Problem Statement – Cont.

- TP0 to TP0a loss @ ~26GHz has increased x2 compared to former standards which Fb/2 resided @ ~13GHz
- The fixture achievable manufacturable variance also increased dramatically, making the possible definition of Tx measurements @ TP0a questionable
- Measuring @TP0a according to a predefined fixture limits the possible amount of lanes to be measured, if any
- suggestions were heard to re-define Tx parameters @ TP0, or at (the very limited, tightly defined) TP0a
 (http://www.ieee802.org/3/ck/public/20_01/mellitz_3ck_01a_0120.pdf)
 And difference according to implementation to be accounted for at time of measurement Suggested way to proceed to be described...

Suggested Remedy

- Tx parameters are to be defined @ TP0
- Tx parameters will be measured @ a specific TP0a as implemented per measurement point

The "extension" of Tx parameters from TP0 to TP0a is to be done by:

- A "COM-like" set of equations are to be defined and provide:
 - TP0 defined parameters when run with a null board
 - TP0a adjusted parameters according to every specific TP0 to TP0a test fixture

Suggested Remedy – Cont.

- A reasonable test fixture implementation "region" limit is to be introduced / defined –
 - Initial suggestion:
 - Loss @ 26GHz < 6dB
 - Allowed ILD $\pm 0.5 \div \pm 1$ dB
- The idea allows each board implementor to define their own (reasonable) TP0-TP0a test fixture which varies according to specific implementation challenges
- Gaining "an adjusted" set of Tx parameters allows measuring @ a variety of TP0a

Suggested Remedy – Cont.

- Fixture S-parameter representation is needed and can be obtained by replica, or extraction
- Since the path used is embedding (rather than de-embedding), the Fixture S-param model accuracy may be mediocre and still obtain the appropriate pass criteria @ TP0a
- May be integrated into oscilloscope test suites and directly adjust Tx parameters to a variance of TP0a points
- Allow multiple lanes to be measured as long as replica traces are provided

MARVELL®