TRANSMIT EQUALIZER STEP SIZE SENSITIVITY ANALYSIS

Adee Ran, Intel Howard Heck, Intel Femi Akinwale, Intel

February 2020

Background

- Tx equalization maximum step size specification was 5% in 50G electrical PMDs (clauses 136, 137, also annex 120D)
 - c(-2) was specified as 2.5%.
- In 802.3ck:
 - COM tool versions up to 2.53 (November 2018) used 2.5% step for precursor coefficients
 5% for c(+1)
 - <u>hidaka_3ck_adhoc_01_120518</u> and <u>sun_3ck_adhoc_01a_120518</u> compared multiple configurations including 3 FFE tap granularities: 2.5% (labeled "coarse"), 2% (labeled "medium"), and 1.5% (unlabeled)
 - Channels analyzed were mostly backplane, but there were some cable backplanes and CR channels
 - Based on the results, recommended 2% or finer step (see backup)
 - In COM tool version 2.57 (contributed December 2018) it was changed to 2%, and is unchanged since then
 - Baseline proposal <u>heck_3ck_03b_0319</u> used 2%
 - This is what we have in D1.1.

What's the problem?

 C/
 162
 SC
 162.9.3
 P 140
 L 10
 # 249

 Ran, Adee
 Intel
 Intel<

Comment Type T Comment Status D

The maximum step size of 2% for a PAM4 equalizer creates a significant increase in complexity for a DAC-based transmitter implementation, compared to the step size allowed in the 802.3cd specs.

A PAM4 DAC with the 2.5% specification in 802.3cd is required to be able of outputting 6/0.025=240 possible values, while with a 2% step size it is requires 6/0.02=300 possible values. This means an additional bit should be used in the logic implementing the FFE and DAC control, and the analog circuits should enable more combinations.

The estimated cost in power consumption of the FFE+DAC logic and analog circuits from this small change in resolution, with a non-naive design, is about 0.3-0.4 pJ/bit. This additional power is going to be consumed regardless of the channel in question.

The benefit from this finer resolution has not been analyzed thoroughly enough to justify such an increase in implementation burden and power consumption.

SuggestedRemedy

Change the (max.) values for c(-3) to c(0) to 0.024 (which can be met with a DAC capable of 256 output values).

Proposed Response Response Status W

PROPOSED REJECT.

All analysis to date has used 2% step size. The commenter proposes increasing step size to 2.5% but does not provide evidence that it does not adversely affect the performance of contributed channels.

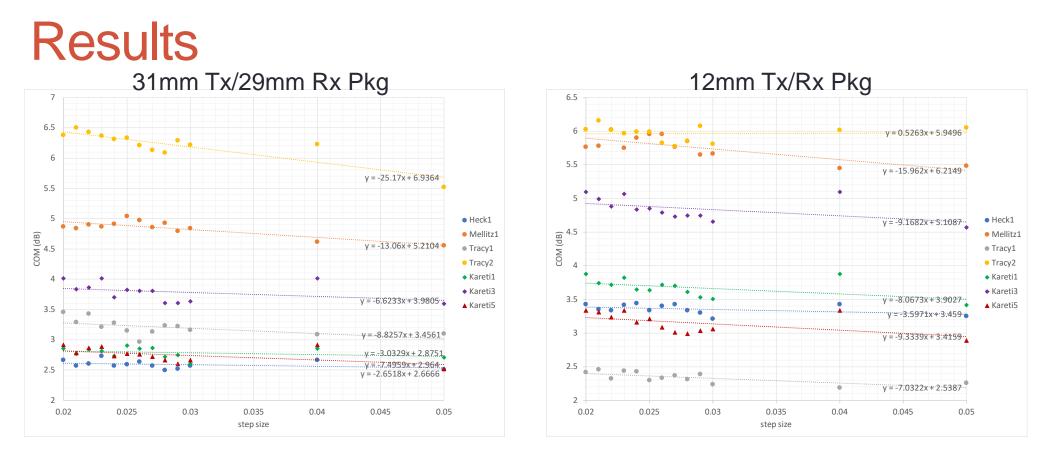
- In a nutshell: for a digital FFE implementation, tap resolution affects output resolution.
- Moving from 2.5% to 2% requires an additional DAC bit
 - Otherwise some steps will have no measurable effect.
- Estimated effect on power is an increase of ~0.4 pJ/bit
 - About 40 mW/lane!
- What benefit do we get?

New analysis

- Objective: Assess the impact of transmit equalizer step size on COM results
 - For checking the benefit of the 2% step size specification
- Method: COM simulations with version 2.76 using the set of "critical" backplane channels
 - Sweep step size: from 2.0% to 3.0% in 0.1% steps, plus 4.0%, 5.0%, to establish trend.
 - Step size applied for c(-3), c(-2), c(-1). c(+1) kept at 5%.

Channels & Conditions

Chan #	Name	IL <mark>(</mark> dB)	Contribution	Channel		
14	Heck1	28.8	heck_3ck_01_1118	28dB_Cable_Backplane/Cable_BCP_28dB_0p575_more_isi		
53	Mellitz1	26.3	mellitz_3ck_adhoc_02_081519 24,28,30dB including BGA Via/CaBP_BGAVia_Op			
21	Tracy1	15.7	Tracy 3ck 01 0119	Traditional Backplane Channels/Std_BP_12inch_Meg7		
17	Tracy2	12.2	Tracy_SCK_01_0119	Orthogonal Backplane Channels/DPO_IL_12dB		
96	Kareti1	27.7		Measured Orthogonal Backplane Channels/OAch4		
89	Kareti3	28.5	kareti3ck_01a_1118	Measured Cabled Backplane Channels/CAch3_b2		
70	Kareti5	28.9		Measured_Traditional_Backplane_Channels/Bch2_b7p5_7		


Conditions

Pkg trace	12mm Tx/Rx, 31/29mm Tx/RxRx
TxEQ step	2%-5% in 0.1% increments from 2%-3%, 1% increments from 3%-5%
RxEQ	KR reference Rx (21 fixed +3x3 floating to 40UI)

COM Spreadsheet

Table 93A-1 parameters			I/O control			Table 93A–3 parameters			
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units
f_b	53.125	GBd		DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	6.141E-03	ns/mm
Delta_f	0.01	GHz		RESULT_DIR	.\results\100GEL_K	R_{date}	package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
C_d	[1.2e-4 1.2e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	benar	tsi_3ck_01_0119 & mellitz_3	k_01_0119
L_s	[0.12, 0.12]	nH	[TX RX]	Port Order	[1 3 2 4]			Table 92–12 parameters	
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	KR_eval_		Parameter	Setting	
z_p select	[12]		[test cases to run]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]		Operational		board_tl_tau	5.790E-03	ns/mm
z_p (NEXT)	[12 29; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	100	Ohm
z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]	ERL Pass threshold	10.5	dB	z_bp (TX)	110.3	mm
z_p (RX)	[12 29; 1.8 1.8]	mm	[test cases]	DER_0	1.00E-04		z_bp (NEXT)	110.3	mm
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	110.3	mm
R_0	50	Ohm		FORCE_TR	1	logical	z_bp (RX)	110.3	mm
R_d	[50 50]	Ohm	[TX RX]				C_0	[0.29e-4]	nF
A_v	0.415	V		TDR	and ERL options		C_1	[0.19e-4]	nF
A_fe	0.415	V		TDR	1	logical	Include PCB	0	logical
A_ne	0.608	V		ERL	1	logical		Floating Tap Control	
L	4			ERL_ONLY	0	logical	N_bg	3	0 1 2 or 3 groups
М	32			TR_TDR	0.01	ns	N_bf	3	taps per group
	filter and Eq			N	3000		N_f	40	UI span for floating taps
f_r	0.75	*fb		beta_x	2.3407E+09		bmaxg	0.2	max DFE value for floating taps
c(0)	0.54		min	rho_x	0.19		B_float_RSS_MAX	0.03	rss tail tap limit
c(-1)	[-0.34:0.02:0]		[min:step:max]	fixture delay time	[00]	[port1 port2]	N_tail_start	25	(UI) start of tail taps limit
c(-2)	[0:0.02:0.12]		[min:step:max]	TDR_W_TXPKG	0			ICN parameters	
c(-3)	[-0.06:0.02:0]		[min:step:max]	N_bx	12	UI	f_v	0.723	*Fb
c(1)	[-0.2:0.05:0]		[min:step:max]	Re	ceiver testing		f_f	0.723	*Fb
N_b	12	UI		RX_CALIBRATION	0	logical	f_n	0.723	*Fb
b_max(1)	0.85			Sigma BBN step	5.00E-03	V	f_2	39.844	GHz
b_max(2N_b)	0.2				Noise, jitter		A_ft	0.600	V
g_DC	[-20:1:0]	dB	[min:step:max]	sigma_RJ	0.01	UI	A_nt	0.600	V
f_z	21.25	GHz		A_DD	0.02	UI	heck_3ck_03b_0319	Adopted Mar 2019	kasapi_3ck_02_1119
f_p1	21.25	GHz		eta_0	8.2E-09	V^2/GHz	walker_3ck_01d_0719	Adopted July 2019	Adopted Nov 2019
f_p2	53.125	GHz		SNR_TX	33	dB	result of R_d=50		under consideration
g_DC_HP	[-6:1:0]		[min:step:max]	R_LM	0.95		benartsi_3ck_01a_0719	no used for KR	
f_HP_PZ	0.6640625	GHz					mellitz_3ck_03_0919		

values swept -

In both cases, COM vs. step size trend is very small in all channels

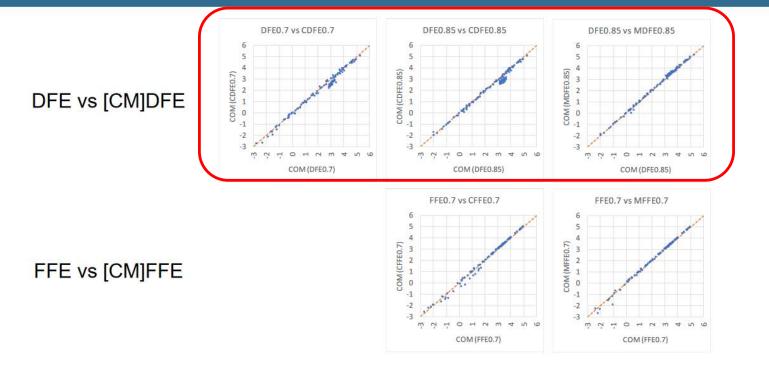
Effect of 2% to 2.5% is between ~0.05 dB (for low COM channels) and 0.13 dB (for the high COM channel)

Results are very "noisy" and inconclusive even at relatively large steps (R² maximum value was only ~0.75; most were much worse)

Why does Tx step size have such little effect?

- Tx equalizer is convolved with the channel and CTLE to create a pulse response
- Sampling phase selection and DFE zero-force most of the ISI
 - ISI after the DFE range is practically unaffected by FFE step size
 - The only possible effect is on h(0) (signal), and on h(-2), h(-3), h(-4) (ISI)
 - The residual precursor ISI is likely not a strong contributor to bottom line COM
- The optimal COM may not be exactly on the search grid
- Changing the grid of c(-1), c(-2) may cause a different point of CTLE grid to become "optimal".
- This represents reality! Not just a tool artifact.

9

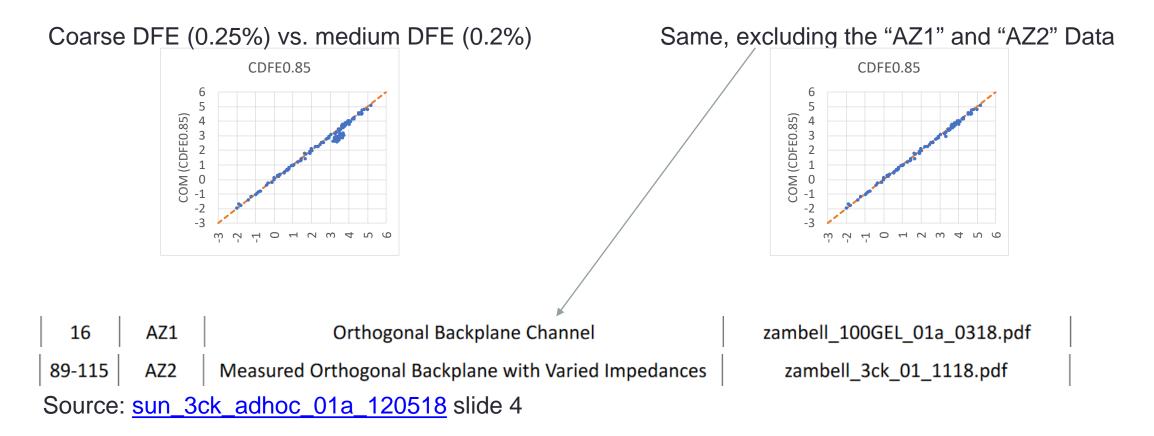

Summary and recommendations

- Moving from 2.5% (max c(-2) step in the 50G PMDs) to 2% (as in D1.1) would require an additional bit in a digital FFE implementation
 - Estimated power impact of ~0.4 pJ/bit
- The Tx FFE coefficient step size has small and inconsistent effect on COM for the analyzed "critical" channels, even in the range of 2% to 5%
- Recommendation: restore the maximum step sizes of c(-3), c(-2), and c(-1) to 2.5%
 - For both KR and CR.

BACKUP

What was the 2% recommendation based on?

TX Resolution Impact

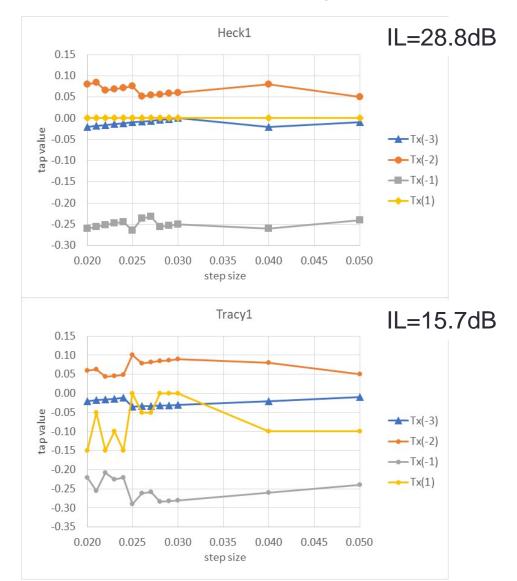


Source: <u>sun_3ck_adhoc_01a_120518</u> Slide 8

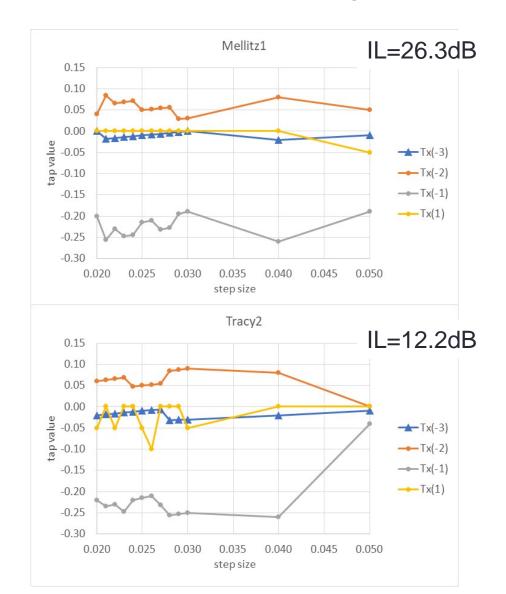
2.5% (CDFE and CFFE) are often much worse than 1.5% (DFE and FFE)
 2.0% (MDFE and MFFE) are close to 1.5% (DFE and FFE)
 CredŐ

Digging into the data

Full data set provided in hidaka_3ck_adhoc_02_120518 to enable further analysis

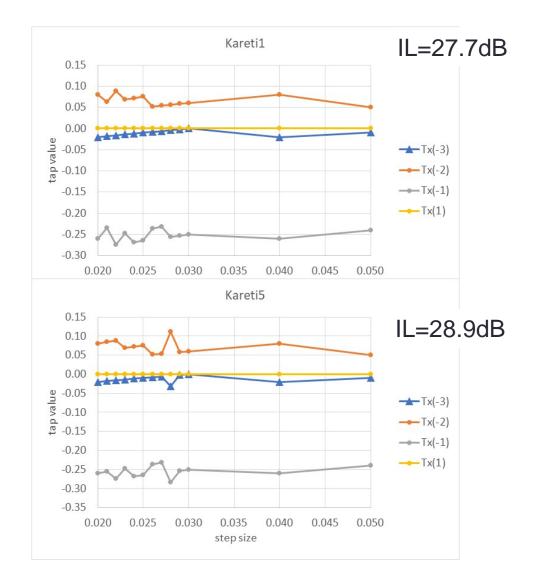


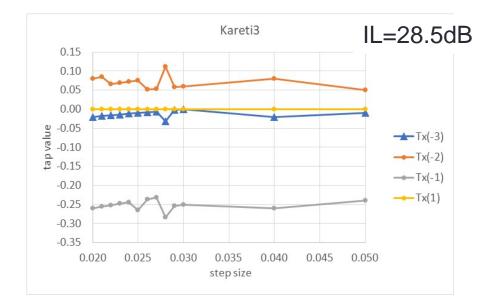
Eventually we chose a subset of channels for analysis The Highlighted Channels


Contribution	Channel	
heck 3ck 01 1118	28dB Cabled Backplane/Cable_BKP_28dB_0p575m_more_isi	"AZ" channels
<u>Heck Sck OI 1118</u>	<u>16dB Cabled Backplane</u> /Cable_BKP_16dB_0p575m_more_isi	in the list
mellitz 3ck adhoc 02 081518	24,28,30dB including BGA Via/CaBP_BGAVia_Opt2_28dB	
tracy 3ck 01 0119	Traditional Backplane Channels/Std_BP_12inch_Meg7	
LIACY SCK OF OF OF OF	Orthogonal Backplane Channels/DPO_IL_12dB	
	Measured Orthogonal Backplane Channels/OAch4	
karati 2ak 01a 1119	Measured Orthogonal Backplane Channels/Och4	
<u>kareti 3ck 01a 1118</u>	Measured Cabled Backplane Channels/CAch3_b2	
	Measured Traditional Backplane Channels/Bch2_a7p5_7	

Source: kochuparambil_3ck_01c_0119 slide 5

Tap Values By Channel




31/29mm Tx/Rx Package

Tap Values By Channel

31/29mm Tx/Rx Package

