Exploration on the worst case DFE weight of DFE error propagation effect

Yuchun Lu, Huawei Yan Zhuang, Huawei Zhilei Huang, Huawei Liang Li, Huawei Lin Ma, Huawei

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Background

Decision Feedback Equalizer (DFE) error propagation impacts the FEC performance significantly. Two baseline reference receivers are under consideration (<u>lu_3ck_adhoc_01a_121218</u>).

- 'm-pre & 0-post' FFE + n-tap DFE (FFE-lite)
- 'm-pre & n-post' FFE + 1-tap DFE (FFE-heavy)

Contributions on DFE error propagation, precoding, PMA/FEC interleaving are discussed in IEEE802.3ck Task Force. (More works can be found in IEEE and also published papers)

 <u>healey 100GEL 01 0318</u>, gustlin 3ck 01 0718, zhang 3ck 01a 0918, anslow 3ck 01 0918, gustlin 3ck 01 1118, anslow_3ck_01_1118

Techniques to reduce the impact of DFE error propagation includes:

- Precoding: Mandatory, Optional or Negotiable?
- **PMA interleaving**: Bit-Mux or Symbol-Mux?
- FEC interleaving: single FEC or two interleaved FECs for 100GE case?

Use interleaved FEC to guarantee performance while requiring extra latency and complexity?

Interleaved FEC to be mandatory or optional; configurable or negotiable? Cover all cases or just specific scenarios?

The worst case DFE weight for real channels is needed in the analysis. A simple way to derive the worst case DFE weight will be provided in this presentation.

Table of Contents

DFE error propagation mechanisms

- DFE burst errors exhibit "+1, -1" zig-zag patterns.
- DFE burst errors terminate when equalized signal is out of range.

Equivalent 1-tap model for n-tap DFE (Semi-analytical, boundary analysis)

- n-tap DFE is equivalent to 1-tap DFE with time-variant DFE weight.
- Simulation of DFE error propagation probability p for n-tap DFE is provided.

Analysis of n-tap DFE error propagation

• The two DFE weight configurations considered previously:

DFE weight = [0.7, 0, 0.2, 0, 0.2] & DFE weight = [0.7, -0.1, 0.1, -0.1, 0.1]

• Recommended worst case n-tap DFE weights from COM reference receivers

Summary

DFE burst errors exhibit "+1, -1" zig-zag patterns

Precoding correlated the adjacent symbols. "+1, -1" error patterns will be cancelled after decoding. Long burst errors will be converted in to individual errors at the head and tail. $S-E\cdot Pos1$ is slicer input for the next symbol, If *E* is zero $S-E\cdot Pos1=S$, next *E* will be probably be zero. If *E* is positive $S-E\cdot Pos1<S$, next *E* will be probably negative. If *E* is negative $S-E\cdot Pos1>S$, next *E* will be probably positive.

DFE burst errors terminate when equalized signal is out of range

👐 HUAWEI

n-tap DFE is equivalent to 1-tap DFE with time-variant DFE weight

Pos1'

n-tap DFE

Time	D ₁	\mathbf{D}_2	D ₃	\mathbf{D}_4	•••	Pos1'
0	0	0	0	0	•••	0
1	E_1	0	0	0		Pos1
2	E_2	E_1	0	0		Pos1-Pos2
3	<i>E</i> ₃	E_2	E_1	0		Pos1-Pos2+Pos3
•••		•••	•••	•••		
L+1	E_L	E_{L-1}	<i>E</i> _{<i>L</i>-2}	<i>E</i> _{<i>L</i>-3}		Pos1-Pos2+Pos3-Pos4+

Real Symbol

D1

1-tap DFE

- n-tap DFE can be viewed as 1 tap DFE with time-variant DFE coefficient.
- Tap k DFE will assist the error propagation

- "k is even and
$$\frac{Pos(k)}{Pos(1)} < 0$$
";

- "k is odd and
$$\frac{Pos(k)}{Pos(1)} > 0$$
".

• Tap k DFE will hinder the error propagation

- "k is even and
$$\frac{Pos(k)}{Pos(1)} > 0$$
";

- "k is odd and
$$\frac{Pos(k)}{Pos(1)} < 0$$
".

Error propagation probability *p* may reduce for n-tap DFEs

The error propagation probablity is obtained from Monte-Carlo simulation (no assumption was made): $p = \text{Prob.} (E_{k+1}|E_k = 1 \text{ or } S_k = 1) = \frac{\text{Total # of error prop. events}}{\text{Total # of error prop. trials}} = \frac{\sum_k (BL[k] - 1)}{\sum_k BL[k]}$

- The 2nd DFE tap may assist or hinder the error propagation which depends on 'Pos2/Pos1'. This rule applies to scenarios with beyond 2-tap DFEs.
- If Pos2/Pos1=0.3, the error propagation probability will reduce from 0.7 to 0.5 for random SER = 2e-5; and reduce from 0.65 to 0.52 for random SER=2e-3.
- 3. This model can be generalized to n-tap DFE easily.
- 4. Error propagation probability p is dominant even for 'Pecoded' cases.
- 5. Smaller p → low probability of long burst → low probability of segmented error pattern (-1 1 0 0 -1 1 1 0 0 0 -1 1 -1 1 -1) → smaller # of error symbols (μ) that a burst will be converted to by 'Precoding' → low probability of 'Precoding' failure.

n-tap DFE has lower error propagation probability than 1-tap DFE

- n-tap DFE has lower error propagation probability than 1-tap DFE in real channels. The k-th tap DFE, k>2, will cancel the feedback error of the 1st-tap DFE, which will give a lower equivalent 1-tap DFE weight.
- Investigated with Monte-Carlo simulation of real 56Gbps PAM4 channels, the conclusion is applicable for 112Gbps PAM4 links.
- Error propagation probability: $p = \text{Prob.}(E_{k+1}|E_k = 1 \text{ or } S_k = 1) = \frac{\text{Total # of error prop. events}}{\text{Total # of error prop.trials}} = \frac{\sum_k (BL[k]-1)}{\sum_k BL[k]}.$
- Probability fitting function for 1-tap DFE: Prob. $(BL) = p^{BL-1}(1-p), BL \ge 1$

Examples for n-tap DFE error propagation: Always propagate

- The error propagation probability *p* of two DFE weight investigated in <u>anslow 3ck 01 0918</u> is beyond **0.75**; and the equivalent 1-tap DFE weight is **1.1**. It may be too pessimistic for the investigation of DFE error propagation and its impact on FEC performance.
 - Configuration 1: [0.7, 0, 0.2, 0, 0.2] equivalent 1-tap DFE weight is 1.1.
 - Configuration 2: [0.7, -0.1, 0.1, -0.1, 0.1] equivalent 1-tap DFE weight is **1.1**.

Time	D ₁	D ₂	\mathbf{D}_3	D ₄	\mathbf{D}_5	Pos1'
Inne	0.7	0	0.2	0	0.2	0
0	0	0	0	0	0	0
1	+E	0	0	0	0	0.7
2	- <i>E</i>	+E	0	0	0	0.7-0= <mark>0.7</mark>
3	+E	- <i>E</i>	+E	0	0	0.7-0+0.2= <mark>0.9</mark>
4	- <i>E</i>	+E	- <i>E</i>	+E	0	0.7-0+0.2-0= <mark>0.9</mark>
5	+E	- <i>E</i>	+E	- <i>E</i>	+E	0.7-0+0.2-0+0.2=1.1
6	- <i>E</i>	E	- <i>E</i>	+E	- <i>E</i>	1.1
	• • •	•••	• • •	•••	• • •	•••

Time	\mathbf{D}_1	\mathbf{D}_2	D ₃	D ₄	D ₅	Pos1'
Inne	0.7	-0.1	0.1	-0.1	0.1	0
0	0	0	0	0	0	0
1	+E	0	0	0	0	0.7
2	- <i>E</i>	+E	0	0	0	0.7-(-0.1)= <mark>0.8</mark>
3	+E	- <i>E</i>	+E	0	0	0.7-(-0.1)+0.1= <mark>0.9</mark>
4	-E	+E	- <i>E</i>	+E	0	0.7-(-0.1)+0.1-(-0.1)= <mark>1.0</mark>
5	+E	- <i>E</i>	+E	- <i>E</i>	+E	0.7-(-0.1)+0.1-(-0.1)+1.0=1.1
6	- <i>E</i>	+E	- <i>E</i>	+E	- <i>E</i>	1.1
•••	• • •	• • •	•••	• • •	• • •	•••

DFE weight = [0.7, -0.1, 0.1, -0.1, 0.1]

DFE weight = [0.7, **0**, 0.2, **0**, 0.2]

Examples for n-tap DFE error propagation: Propagation terminate

Time	D ₁	\mathbf{D}_2	\mathbf{D}_3	D ₄	D ₅	Pos1'
Inne	0.7	0	0.2	0	0.2	0
0	0	0	0	0	0	0
1	+E	0	0	0	0	0.7
2	0	+E	0	0	0	0
3	0	0	+E	0	0	0-0+0.2= <mark>0.2</mark>
4	0	0	0	+E	0	0-0+0-0= <mark>0.0</mark>
5	0	0	0	0	+E	0-0+0-0+0.2=0.2
6	0	0	0	0	0	0-0+0-0+0=0
•••		•••				•••

Time	\mathbf{D}_1	\mathbf{D}_2	D ₃	D ₄	D ₅	Pos1'
Inne	0.7	-0.1	0.1	-0.1	0.1	0
0	0	0	0	0	0	0
1	+E	0	0	0	0	0.7
2	0	+E	0	0	0	0-(-0.1)= <mark>0.1</mark>
3	0	0	+E	0	0	0-0+0.1= <mark>0.1</mark>
4	0	0	0	+E	0	0-0+0-0.1=-0.1
5	0	0	0	0	+E	0-0+0-0+0.1=-0.1
6	0	0	0	0	0	0-0+0-0+0=0
• • •	• • •	• • •	• • •	• • •	•••	

DFE weight = [0.7, 0, 0.2, 0, 0.2]

DFE weight = [0.7, -0.1, 0.1, -0.1, 0.1]

>35 times difference.

- The error propagation probability p of (pos1/main)=0.2 is <0.02.
- The error propagation probability p of (pos1/main)=0.7 is ~0.7.
- As long as the DFE burst error terminate, the impact of the 1st tap DFE is eliminated, the impact of remaining DFE taps (2, 3, 4, ... taps) is minor.
- The impact of n-tap DFE error propagation effects should be similar to the 1-tap DFE case.

Examples for n-tap DFE error propagation: Segmented error

Time	D ₁	D ₂	D ₃	D ₄	D ₅	Pos1'
Ime	0.7	0	0.2	0	0.2	0
0	0	0	0	0	0	0
1	+E	0	0	0	0	0.7
2	0	+E	0	0	0	0-0=0
3	+E	0	+E	0	0	0.7-0+0.2= <mark>0.9</mark>
4	-E	E	0	+E	0	0.7-0+0-0= <mark>0.7</mark>
5	+E	- <i>E</i>	+E	0	+E	0.7-0+0.2-0+0.2=1.1
6	- <i>E</i>	+E	- <i>E</i>	+E	0	0.7-0+0.2-0+0 =0.9
7	+E	- <i>E</i>	+E	- <i>E</i>	+E	1.1
8	- <i>E</i>	+E	- <i>E</i>	+E	- <i>E</i>	1.1
•••	• • •	• • •	• • •	• • •	• • •	•••

Another burst error

DFE weight = [0.7, 0, 0.2, 0, 0.2]

- The error propagation probability p of (pos1/main)=0.2 is <0.02.
- The error propagation probability p of (pos1/main)=0.7 is ~ 0.7 .
- As long as the DFE burst error terminate, the impact of the 1st tap DFE is eliminated. The error propagation effect due to the 2,3, 4, ... taps is minor.
- The probability of "segmented error" is close to "One burst error run into another one.". <BER²=(1e-4)²=1e-8.

DFE weight = [0.7, -0.1, 0.1, -0.1, 0.1]

>35 times difference.

Time	D ₁	D ₂	D ₃	D ₄	D ₅	Pos1'
Inne	0.7	-0.1	0.1	-0.1	0.1	0
0	0	0	0	0	0	0
1	+E	0	0	0	0	0.7
2	0	+E	0	0	0	0-(-0.1)=0.1
3	+E	0	+E	0	0	0.7-(0)+0.1= <mark>0.8</mark>
4	-E	+E	0	+E	0	0.7-(-0.1)+0-(-0.1)= <mark>0.9</mark>
5	+E	- <i>E</i>	+E	0	+E	0.7-(-0.1)+0.1-0+0.1= <mark>1.0</mark>
6	- <i>E</i>	+E	- <i>E</i>	+E	0	0.7-(-0.1)+0.1-0+0= <mark>0.9</mark>
7	+E	- <i>E</i>	+E	- <i>E</i>	+E	1.1
8	- <i>E</i>	+E	- <i>E</i>	+E	- <i>E</i>	1.1
•••	• • •	• • •	•••	• • •	•••	•••

error

Another burst

II Dango (dB)	и (др)	ICN(mV)	ILD (dB)	B) COM (dB)		DF	E Wei	ight		Equivalent 1-tap DFE Weight						
IL Kange (ub)	іс (аб)		ILD (UD)		b1	b2	b3	b4	b5	Post1'(1)	Post1'(2)	Post1'(3)	Post1'(4)	Post1'(5)		
	-26.0	0.89	0.46	3.52	0.78	0.07	-0.01	0.03	0.02	0.78	0.7	0.67	0.69	0.71		
	-26.2	0.40	0.45	2.22	0.69	0.15	0.13	0.10	0.06	0.69	0.67	0.57	0.63	0.54		
	-26.2	0.40	0.32	3.20	0.71	0.10	0.01	0.02	0.01	0.71	0.62	0.6	0.61	0.61		
26~27	-26.5	0.84	0.85	2.17	0.71	0.19	0.08	0.03	0.04	0.71	0.6	0.57	0.61	0.52		
	-26.7	0.49	0.51	4.01	0.73	0.12	0.01	-0.01	0.00	0.73	0.62	0.63	0.63	0.61		
	-26.9	0.40	0.47	2.01	0.72	0.13	0.12	0.09	0.06	0.72	0.71	0.62	0.68	0.59		
	-27.0	1.32	0.58	1.74	0.73	0.13	0.03	0.01	0.02	0.73	0.63	0.62	0.64	0.6		
	-27.4	0.29	0.27	4.22	0.77	0.10	0.01	0.02	0.01	0.77	0.68	0.66	0.67	0.67		
	-27.5	1.32	0.60	1.64	0.74	0.12	0.02	0.00	0.01	0.74	0.64	0.64	0.65	0.62		
	-27.6	0.42	0.26	3.86	0.71	0.13	-0.03	-0.04	-0.03	0.71	0.55	0.59	0.56	0.58		
27~28	-27.8	0.40	0.50	1.70	0.76	0.11	0.09	0.07	0.04	0.76	0.74	0.67	0.71	0.65		
	-27.8	0.35	0.27	2.83	0.72	0.15	0.05	0.04	0.03	0.72	0.62	0.58	0.61	0.57		
	-27.8	0.40	0.36	2.44	0.74	0.13	0.02	0.01	0.01	0.74	0.63	0.62	0.63	0.61		
	-28.0	0.00	0.00	4.07	0.72	0.14	-0.04	-0.05	-0.04	0.72	0.54	0.59	0.55	0.58		
	-28.0	0.00	0.03	4.43	0.74	0.09	-0.08	-0.08	-0.05	0.74	0.57	0.65	0.6	0.65		
28~29	-28.4	0.40	0.39	2.43	0.73	0.08	-0.03	-0.03	-0.02	0.73	0.62	0.65	0.63	0.65		
	-28.7	0.52	0.90	1.65	0.72	0.18	0.05	0.01	0.01	0.72	0.59	0.58	0.59	0.54		
29~30	-29.4	1.16	1.07	1.53	0.75	0.11	-0.03	-0.08	-0.05	0.75	0.61	0.69	0.64	0.64		
	-29.7	1.15	1.02	1.78	0.76	0.13	-0.02	-0.09	-0.06	0.76	0.61	0.7	0.64	0.63		

Post1'(n) = $b(1) - b(2) + ...(-1)^{n-1}b(n)$

Configuration: FFE-lite, Modified-PD <u>lu 3ck adhoc 01a 121218</u>, **b(1)**_{max}=0.6, COM >1.5.

II Range (dB) II (c		(m)/)				DF	E Wei	ight		Equivalent 1-tap DFE Weight						
IL Kalige (ub)	п (ав)				b1	b2	b3	b4	b5	Post1'(1)	Post1'(2)	Post1'(3)	Post1'(4)	Post1'(5)		
	-26.0	0.89	0.46	3.67	0.87	0.22	0.09	0.09	0.06	0.87	0.65	0.74	0.65	0.71		
	-26.1	1.32	0.66	1.59	0.79	0.29	0.22	0.15	0.11	0.79	0.51	0.72	0.58	0.68		
	-26.2	0.40	0.45	2.42	0.80	0.26	0.21	0.16	0.10	0.80	0.54	0.75	0.59	0.69		
26.27	-26.2	0.40	0.32	3.43	0.82	0.23	0.11	0.08	0.05	0.82	0.59	0.69	0.61	0.67		
20~21	-26.5	0.84	0.85	2.31	0.80	0.33	0.19	0.11	0.10	0.80	0.47	0.67	0.55	0.65		
	-26.7	0.49	0.51	4.15	0.80	0.28	0.15	0.10	0.07	0.80	0.52	0.67	0.58	0.65		
	-26.9	0.40	0.47	2.18	0.78	0.27	0.21	0.16	0.11	0.78	0.51	0.73	0.57	0.68		
	-27.0	1.32	0.58	1.96	0.83	0.28	0.15	0.10	0.08	0.83	0.55	0.70	0.60	0.68		
	-27.4	0.29	0.27	4.36	0.89	0.21	0.08	0.07	0.05	0.89	0.68	0.76	0.70	0.74		
	-27.5	1.32	0.60	1.89	0.84	0.26	0.12	0.07	0.06	0.84	0.59	0.71	0.64	0.70		
	-27.6	0.42	0.26	3.99	0.83	0.26	0.07	0.04	0.03	0.83	0.57	0.64	0.60	0.63		
27~28	-27.8	0.40	0.50	1.86	0.85	0.22	0.17	0.13	0.09	0.85	0.63	0.80	0.67	0.76		
	-27.8	0.35	0.27	3.04	0.82	0.26	0.13	0.09	0.07	0.82	0.57	0.70	0.60	0.67		
	-27.8	0.40	0.36	2.63	0.84	0.23	0.10	0.06	0.05	0.84	0.61	0.70	0.64	0.69		
	-28.0	0.00	0.00	4.34	0.81	0.20	0.00	-0.03	-0.02	0.81	0.61	0.61	0.64	0.61		
	-28.0	0.00	0.03	4.84	0.86	0.18	-0.07	-0.10	-0.07	0.86	0.68	0.61	0.71	0.63		
20.20	-28.4	0.40	0.39	2.68	0.82	0.24	0.11	0.07	0.05	0.82	0.59	0.69	0.62	0.67		
28~29	-28.7	0.52	0.90	1.78	0.82	0.28	0.12	0.06	0.05	0.82	0.55	0.67	0.61	0.66		
	-28.9	0.40	0.54	1.56	0.86	0.20	0.15	0.12	0.08	0.86	0.66	0.80	0.69	0.77		
29~30	-29.4	1.16	1.07	1.82	0.84	0.20	0.04	-0.03	-0.02	0.84	0.64	0.68	0.71	0.69		
	-29.7	1.15	1.02	2.11	0.87	0.23	0.06	-0.03	-0.01	0.87	0.64	0.70	0.73	0.71		

Post1'(n) = $b(1) - b(2) + ...(-1)^{n-1}b(n)$

Configuration: FFE-lite, Modified-PD <u>lu 3ck adhoc 01a 121218</u>, **b(1)**_{max}=0.7, COM >1.5.

Summary

- DFE error propagation mechanisms are reviewed.
 - 'Zig-Zag' error pattern: Precoding can convert long burst to individual errors at head and tail.
 - Terminate with signal out of range: There is a chance to correct the error at the tail.
- Equivalent 1-tap model for n-tap DFE is discussed. (Based on Monte-Carlo experiments)
 - n-tap DFE is equivalent to 1-tap DFE with time-variant DFE weight.
 - n-tap DFE may have lower error propagation probability than 1-tap DFE in real channels.
- The n-tap DFE error propagation is re-examined with equivalent 1-tap model.
 - First DFE tap is dominant in the error propagation. The probability of "Segmented burst errors" is similar to "burst errors run into each other". The Precoding failure probability is small.

2 segments: $BER^2 = (10^{-4})^2 = 10^{-8}$; 3 segments: $BER^3 = (10^{-4})^3 = 10^{-12}$; ...

- DFE weights [0.7, 0, 0.2, 0, 0.2] and [0.7, -0.1, 0.1, -0.1, 0.1] might be too pessimistic for real channels.
- DFE weights with FFE-lite model is provided for error propagation investigation.
 b1max=0.6, b(1)~=0.7: [0.78, 0.07, -0.01, 0.03, 0.02] (post'=0.71); [0.77, 0.10, 0.01, 0.02, 0.01] (post'=0.67)
 b1max=0.7, b(1)~=0.8: [0.87, 0.22, 0.09, 0.09, 0.06] (post'=0.71); [0.89, 0.21, 0.08, 0.07, 0.05] (post'=0.74)
- The worst case DFE weights derived from reference receivers and real channels (with the largest equivalent 1-tap DFE weight) are recommended to be used in the DFE error propagation analysis.

Thank you!

把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。

Bring digital to every person, home, and organization for a fully connected, intelligent world.

Average # of error symbols per burst error after precoding (μ)

				-		-		-		
	Insertion	1 tap	2 tap	3 tap	4 tap	5 tap	6 tap	7 tap	8 tap	9 tap
	Loss	DFE	DFE	DFE	DFE	DFE	DFE	DFE	DFE	DFE
	40.1dB	2.000	<u>2.891</u>	2.442	2.387	2.352	2.356	2.352	2.351	2.357
α=0.6	38.2dB	2.000	2.480	2.275	2.244	2.233	2.228	2.239	2.244	2.242
Under-	36.2dB	2.000	2.258	2.154	2.158	2.147	2.141	2.146	2.146	2.140
equalized	34.2dB	2.000	2.123	2.083	2.076	2.077	2.080	2.080	2.082	2.078
	32.4dB	2.000	2.067	2.045	2.053	2.051	2.048	2.050	2.048	2.047
	40.1dB	2.000	<u>2.181</u>	2.115	2.107	2.100	2.113	2.104	2.111	2.113
<i>α</i> =0.8	38.2dB	2.000	2.088	2.052	2.054	2.054	2.056	2.052	2.050	2.054
Under-	36.2dB	2.000	2.037	2.028	2.026	2.024	2.026	2.024	2.030	2.028
equalized	34.2dB	2.000	2.017	2.014	2.013	2.013	2.012	2.015	2.016	2.014
	32.4dB	2.000	2.009	2.007	2.006	2.007	2.008	2.008	2.007	2.008
	40.1dB	2.000	<u>2.033</u>	2.021	2.018	2.020	2.022	2.021	2.020	2.022
<i>α</i> =1.0	38.2dB	2.000	2.012	2.009	2.010	2.008	2.010	2.010	2.009	2.010
Optimal-	36.2dB	2.000	2.006	2.004	2.003	2.004	2.006	2.005	2.003	2.003
equalized	34.2dB	2.000	2.002	2.002	2.001	2.002	2.002	2.002	2.002	2.002
	32.4dB	2.000	2.001	2.001	2.001	2.002	2.001	2.001	2.001	2.001
	40.1dB	2.000	<u>2.004</u>	2.006	2.007	2.006	2.008	2.007	2.007	2.006
a=1.2	38.2dB	2.000	2.001	2.002	2.003	2.003	2.002	2.002	2.002	2.003
Over-	36.2dB	2.000	2.000	2.002	2.001	2.001	2.002	2.002	2.002	2.002
equalized	34.2dB	2.000	2.000	2.000	2.001	2.001	2.001	2.000	2.001	2.000
	32.4dB	2.000	2.000	2.001	2.001	2.001	2.001	2.000	2.001	2.001

Average # of PAM-4 symbol error that pre-coding will convert a burst error train into.

- 1. For 1 tap DFE case, the pre-coding probably convert the burst error into 2 PAM4 symbol errors.
- 2. If the CTLE is chosen properly, α=0.8, 1.0, 1.2, the burst errors will be probably converted to two PAM4 symbol errors.
- 3. The upper bounds for the # of PAM-4 symbol errors that converted from burst error trains by pre-coding is 3.
- 4. The tap 2 DFE has the largest impact on the # of PAM-4 symbol errors that converted from burst error trains by pre-coding. There is no obvious dependency of this number on DFE tap #, when it goes beyond 2.
- 5. We use $2.0 \le \eta \le 4.0$ as a multiplication factor of bit errors in our pre-coded formula of FEC.

	Channel		ICN		COM		DF	E We	ight		Equivalent 1-tap
IL Kange (OD)	Channel	іг (αв)	(mV)	ILD (OB)	(dB)	b1	b2	b3	b4	b5	DFE Weight
	zambell_3ck_01_1118_Link_7	-26.0	0.89	0.46	3.52	0.78	0.07	-0.01	0.03	0.02	0.71
	kareti_3ck_01_1118_cabledBP_CAch2_a2p5	-26.2	0.40	0.45	2.22	0.69	0.15	0.13	0.10	0.06	0.54
26~27	kareti_3ck_01_1118_cabledBP_CAch2_b6	-26.2	0.40	0.32	3.20	0.71	0.10	0.01	0.02	0.01	0.61
	kareti_3ck_01_1118_ortho_OAch3	-26.5	0.84	0.85	2.17	0.71	0.19	0.08	0.03	0.04	0.52
	mellitz_3ck_adhoc_02_081518_cabledbackplane_Opt2	-26.7	0.49	0.51	4.01	0.73	0.12	0.01	-0.01	0.00	0.61
	kareti_3ck_01_1118_cabledBP_CAch2_a5	-26.9	0.40	0.47	2.01	0.72	0.13	0.12	0.09	0.06	0.59
	kareti_3ck_01_1118_backplane_Bch2_b7p5_7	-27.0	1.32	0.58	1.74	0.73	0.13	0.03	0.01	0.02	0.6
	zambell_100GEL_02_0318	-27.4	0.29	0.27	4.22	0.77	0.10	0.01	0.02	0.01	0.67
	kareti_3ck_01_1118_backplane_Bch2_b8_7	-27.5	1.32	0.60	1.64	0.74	0.12	0.02	0.00	0.01	0.62
	mellitz_3ck_adhoc_02_081518_cabledbackplane_Opt1	-27.6	0.42	0.26	3.86	0.71	0.13	-0.03	-0.04	-0.03	0.58
27~28	kareti_3ck_01_1118_cabledBP_CAch2_a7p5	-27.8	0.40	0.50	1.70	0.76	0.11	0.09	0.07	0.04	0.65
	kareti_3ck_01_1118_cabledBP_CAch3_b2	-27.8	0.35	0.27	2.83	0.72	0.15	0.05	0.04	0.03	0.57
	kareti_3ck_01_1118_cabledBP_CAch2_b7p5	-27.8	0.40	0.36	2.44	0.74	0.13	0.02	0.01	0.01	0.61
	mellitz_3ck_adhoc_02_072518_channels	-28.0	0.00	0.00	4.07	0.72	0.14	-0.04	-0.05	-0.04	0.58
	mellitz_3ck_adhoc_02_072518_channels	-28.0	0.00	0.03	4.43	0.74	0.09	-0.08	-0.08	-0.05	0.65
28~29	kareti_3ck_01_1118_cabledBP_CAch2_b8	-28.4	0.40	0.39	2.43	0.73	0.08	-0.03	-0.03	-0.02	0.65
	kareti_3ck_01_1118_ortho_OAch4	-28.7	0.52	0.90	1.65	0.72	0.18	0.05	0.01	0.01	0.54
20.20	heck_3ck_01_1118_cable_BKP_28dB_0p575m_more_isi	-29.4	1.16	1.07	1.53	0.75	0.11	-0.03	-0.08	-0.05	0.64
29~30	heck_3ck_01_1118_cable_BKP_28dB_0p575m	-29.7	1.15	1.02	1.78	0.76	0.13	-0.02	-0.09	-0.06	0.63

Configuration: FFE-lite, Modified-PD <u>lu 3ck adhoc 01a 121218</u>, **b(1)**_{max}=0.6, COM >1.5. Package model: <u>COM2.50</u> with Cd=130fF, Cp=110fF, COM2.58 with modified PD support is recommended to use.

II Dongo (dD)	Channel		ICN		COM		DF	E Wei	ight		Equivalent 1-tap
IL Kange (ub)	Channel	п (αв)	(mV)		(dB)	b1	b2	b3	b4	b5	DFE Weight
	zambell_3ck_01_1118_Link_7	-26.0	0.89	0.46	3.67	0.87	0.22	0.09	0.09	0.06	0.71
	kareti_3ck_01_1118_backplane_Bch2_a5_7	-26.1	1.32	0.66	1.59	0.79	0.29	0.22	0.15	0.11	0.68
	kareti_3ck_01_1118_cabledBP_CAch2_a2p5	-26.2	0.40	0.45	2.42	0.80	0.26	0.21	0.16	0.10	0.69
26.27	kareti_3ck_01_1118_cabledBP_CAch2_b6	-26.2	0.40	0.32	3.43	0.82	0.23	0.11	0.08	0.05	0.67
20~21	kareti_3ck_01_1118_ortho_OAch3	-26.5	0.84	0.85	2.31	0.80	0.33	0.19	0.11	0.10	0.65
	mellitz_3ck_adhoc_02_081518_cabledbackplane_Opt2	-26.7	0.49	0.51	4.15	0.80	0.28	0.15	0.10	0.07	0.65
	kareti_3ck_01_1118_cabledBP_CAch2_a5	-26.9	0.40	0.47	2.18	0.78	0.27	0.21	0.16	0.11	0.68
	kareti_3ck_01_1118_backplane_Bch2_b7p5_7	-27.0	1.32	0.58	1.96	0.83	0.28	0.15	0.10	0.08	0.68
	zambell_100GEL_02_0318	-27.4	0.29	0.27	4.36	0.89	0.21	0.08	0.07	0.05	0.74
	kareti_3ck_01_1118_backplane_Bch2_b8_7	-27.5	1.32	0.60	1.89	0.84	0.26	0.12	0.07	0.06	0.70
	mellitz_3ck_adhoc_02_081518_cabledbackplane_Opt1	-27.6	0.42	0.26	3.99	0.83	0.26	0.07	0.04	0.03	0.63
27~28	kareti_3ck_01_1118_cabledBP_CAch2_a7p5	-27.8	0.40	0.50	1.86	0.85	0.22	0.17	0.13	0.09	0.76
	kareti_3ck_01_1118_cabledBP_CAch3_b2	-27.8	0.35	0.27	3.04	0.82	0.26	0.13	0.09	0.07	0.67
	kareti_3ck_01_1118_cabledBP_CAch2_b7p5	-27.8	0.40	0.36	2.63	0.84	0.23	0.10	0.06	0.05	0.69
	mellitz_3ck_adhoc_02_072518_channels	-28.0	0.00	0.00	4.34	0.81	0.20	0.00	-0.03	-0.02	0.61
	mellitz_3ck_adhoc_02_072518_channels	-28.0	0.00	0.03	4.84	0.86	0.18	-0.07	-0.10	-0.07	0.63
20.20	kareti_3ck_01_1118_cabledBP_CAch2_b8	-28.4	0.40	0.39	2.68	0.82	0.24	0.11	0.07	0.05	0.67
28~29	kareti_3ck_01_1118_ortho_OAch4	-28.7	0.52	0.90	1.78	0.82	0.28	0.12	0.06	0.05	0.66
	kareti_3ck_01_1118_cabledBP_CAch2_a10	-28.9	0.40	0.54	1.56	0.86	0.20	0.15	0.12	0.08	0.77
20.20	heck_3ck_01_1118_cable_BKP_28dB_0p575m_more_isi	-29.4	1.16	1.07	1.82	0.84	0.20	0.04	-0.03	-0.02	0.69
29~30	heck_3ck_01_1118_cable_BKP_28dB_0p575m	-29.7	1.15	1.02	2.11	0.87	0.23	0.06	-0.03	-0.01	0.71

Configuration: FFE-lite, Modified-PD <u>lu 3ck adhoc 01a 121218</u>, **b(1)**_{max}=0.7, COM >1.5. Package model: <u>COM2.50</u> with Cd=130fF, Cp=110fF, COM2.58 with modified PD support is recommended to use.

👐 HUAWEI