
Common Mode Comment Support

Richard Mellitz Samtec

January 2022 IEEE 802.3ck Interim

CL 163 and Annex 120F transmitter test setup example

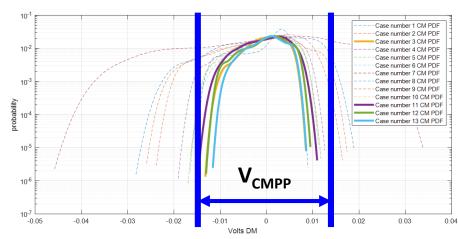
At some low enough frequency the common mode voltage at TPO and TPOv are approximately the same.

Low Frequency CM noise is not fixture dependent

Given:

• $V_{CM}^{(tp0)} \cong V_{CM}^{(tp0v)}$

□ The TPOv CM specifications is:

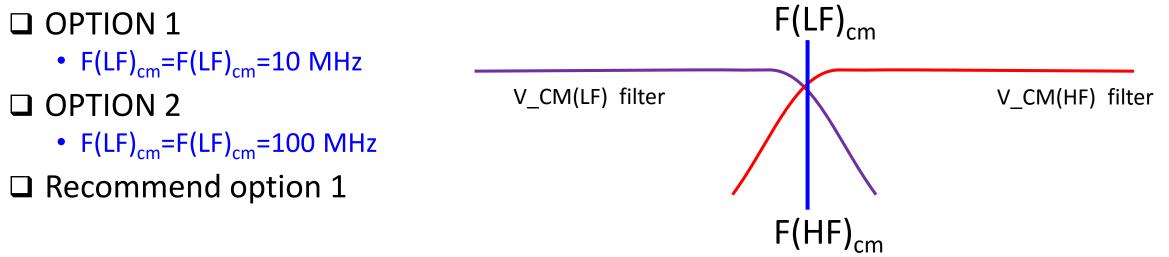

- $SCMR = 20 \log_{10} \left(\frac{p_{max}}{V_{CMPP}} \right)$
- The parameter p_{max} is intended to adjust for high frequency fixture loss and **not** relevant for low frequency signals

□ Recommend: Use V_{CMPP} only for a low frequency CM specifications.

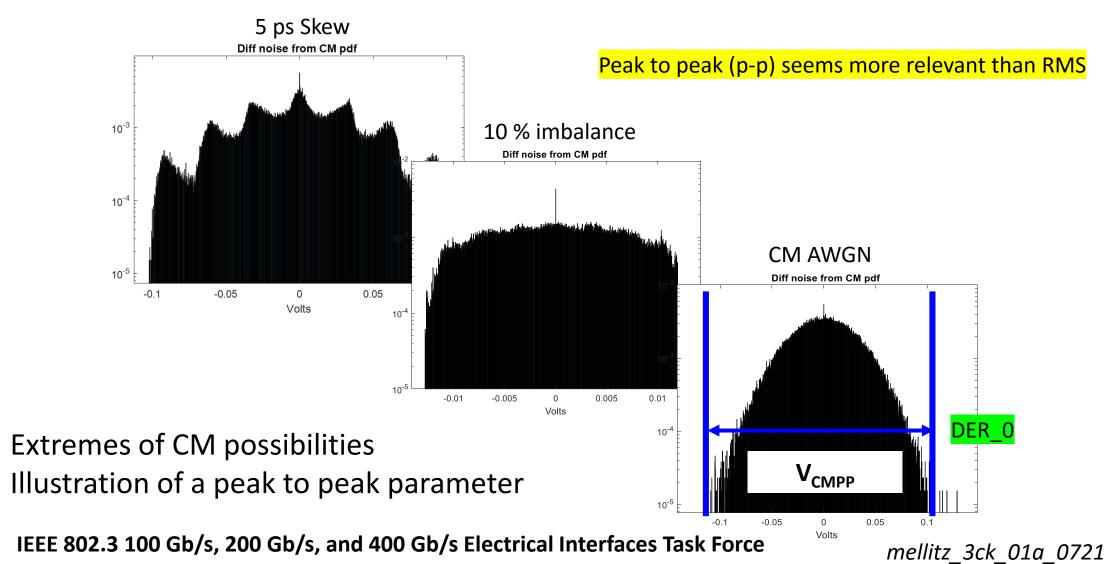
Example of power supply common mode noise spectrum 10 MHz

Example of power supply common mode noise histogram

10⁶



IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force


mellitz_3k_adhoc_01_120821

Proposal 1: Separate CM voltage specification by frequency

- V_CM(LF) is V_CM filtered by a low pass 4th order Bessel Thomson filter with 3 dB point a f(LF)_{cm}
- V_CM(HF) is V_CM filtered by a <u>high</u> pass 4th order Bessel Thomson filter with 3 dB point a f(HF)_{cm}

High Frequency CM noise is fixture dependent and can have wide variety of distributions

•

•

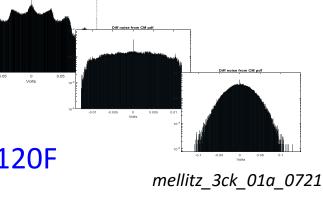
5

High Frequency common mode calculations

- □ SCMR(min) for 11.8 dB (table 163-5) and 10.7 dB (table 120F-1)
- Since low frequency common mode is accounted for elsewhere use 15 mV RMS at a baseline at TPO.
- □ COM Reference Package data
 - Package 1: 12 mm p_{max}=275 mV
 - Package 2: 31 mm p_{max}=213 mV
- □ Option 1: AWGN assumption
 - SCMR(min)= 20*log10(p_{max}/(15*2*qfunctinv(1e-4)) = 11.8 dB (table 163-5)
 - SCMR(min)= 20*log10(p_{max}/(15*2*qfunctinv(1e-5)) = 10.7 dB (table 120F-1)
- □ Option 2: sine wave assumption
 - SCMR(min)= db(p_{max}/(15*2*sqrt(2))) = 14.7 dB (both tables)
- □ Recommend option 1

Proposal 2: for CL 163 and Annex 120F

□ Separate CM with filtering


- V_CM(LF) is V_CM filtered by a low pass 4th order Bessel Thomson filter with 3 dB point a 10 MHz
- V_CM(HF) is V_CM filtered by a <u>high</u> pass 4th order Bessel Thomson filter with 3 dB point a 10 MHz
- \Box V_{CMPP} (max) \rightarrow 30 mV (new line in tables)
 - Used for low frequency
- \Box SCMR(min) \rightarrow 11.8 dB (table 163-5) and 10.7 dB (table 120F-1)
 - Used for high frequency

CM for CL 162 and Annex 120G

RMS does not seem to be as comprehensive as a peak to peak specification like V_{CMPP}

- Aligning measurement method with Clause 163 and Annex 120F
- □ Option 1: AWGN assumption
 - V_{CMPP} = 30*2*qfunctinv(1e-4) = 233 mV (table 162-10)
 - V_{CMPP} = 25*2*qfunctinv(1e-5) = 213 mV (table 120G-1 and table 120G-3)
- □ Option 2: sine wave assumption
 - V_{CMPP} = 30*2*sqrt(2)= 70.7 mV (table 162-10)
 - V_{CMPP} = 25*2*sqrt(2)= 84.5 mV (table 120G-1 and table 120G-3)

 \Box Recommend option 1

Proposal 3: replace CMS RMS with V_{CMPP}

□ V_{CMPP} = 233 mV (table 162-10)

 \Box V_{CMPP} = 213 mV (table 120G-1 and table 120G-3)

