ERL Status: Next Decisions

Richard Mellitz, Samtec

June 10, 2020, IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force Ad Hoc

A Brief Recap of History.

- \Box .3bj = SNDR included ISI
- □ .3bs = SNDR no longer included ISI
 - Introduce SNR_{ISI} but discovered not measurements sensitive enough
- □ .3cd = Introduce ERL to limit ISI

What does an ERL Value Mean?

□ RL and ERL are already included in forward path measurements.

- i.e. $1 + \rho$ is in IL, an eye diagram measurement, or COM
- Where ρ is a reflection coefficient
- ERL can be of thought as an average statistically accumulated reflection
 - Defined for a signal pulse and is adjusted for coding (like PAM 4).
 - It is a singe value
 - A 10 dB ERL specification says about 32% of the pulse is traveling backwards.
 - In standard reference environments
 - That reflected pulse is not seen at the receiver until it is re-reflected.
 - That re-reflection is may be real small by the time it hits the original refection point on its way to the receiver. Typically less than a few percent of the original pulse.

What do we need for the standard?

We really only need to know difference between a reference reflection and an actual one.

What needs to be specified?

□ Test points

Parameters for ERL are

• N, β_x , ρ_x , N_{bx}. T_{fx}, and Z_t

□ ERL min for PMDs

No change in procedure in 93.5A

ERL Status Overview

□ No change in procedure in 93.5A

Parameters for ERL are

• N, β_x , ρ_x , N_{bx}. T_{fx}, and Z_t

So far

 \Box Locked down $\beta_x,\ \rho_x$,and Z_t for all PMDs

 $\hfill\square$ User specifies $\hfill T_{fx}$ to accommodate fixture

 \Box N is determined from electrical length and f_{step}

• Duration for TDR and PTDR in UI

Decisions

\square N_{bx} and ERL min decision required

- \Box N_{bx} is number of UIs which the gating and weighting function extend
 - Normally related to the number of DFE taps
 - Recommendation: Only used if the test point is Tp0 or Tp5
 - i.e. end of channel
- \Box Can't determine ERL min until N_{bx} is set
 - Let's agree on parameter values and next we can set ERL min
- □ Address procedure for test points tp0a and tp5a

Adopt N is based on electrical length and min f_{step}

IEEE .3ck type	Ν	notes
Clause 162 CA Host	800	
Clause 162 CA	3500	Not much difference if N=7000 which requires f_{step} < 5 MHz
CL 163 KR device	200	
CL 163 KR channel	3500	
Annex 120F device	200	
Annex 120F channel	2000	
Annex 120G Host	800	
Annex 120G module	400	

Adopt N_{bx} is as follows

IEEE .3ck type	N _{bx}	note
Clause 162 CA Host	0	
Clause 162 CA	0	
CL 163 KR device	21 ($N_{b} + N_{bg} * N_{bf}$)	
CL 163 KR channel	21 ($N_{b} + N_{bg} * N_{bf}$)	<mark>Controversial</mark>
Annex 120F device	6 (N _b)	
Annex 120F channel	6 (N _b)	
Annex 120G Host	0	
Annex 120G module	0	Controversial But N _{bx} of 0,1,2,3 all have little impact on ERL.

CL 163 KR channel N_{bx} option

Option A:

- N_{bx} of 35 correlates best to channels which have reflections near the end of the channel
 - I.e. 40 UI from Tp0 or Tp5
 - See backup data
- N_{bx} of 35 may pass channel with considerable reflections up to 40 UI which could fail in a system
 - I.e. Beyond the capability of floating taps.

Option B

- \Box N_{bx} of 21 is the conservative tact
 - The physical location would be a the bga interface just after the 30 mm package
 - Takes care of the device.

THANK YOU!

Backup

ERL Procedure review ERL uses Pulse TDR ... PTDR(t)

eta_x and ho_x Parameter Recommendation

 \Box Lock down β_x and ρ_x

- $\beta_x = 0$
- *ρ*_{*χ*} =0.618

No change in [29] IEEE Std 802.3TM-2018, IEEE Standard for Ethernet Annex 93A.5 $G_{loss}(t) = \begin{cases} 0, & t > T_{fx} \\ 10^{\frac{\beta_x \left(t - T_{fx} - T_b(N_{bx} + 1)\right)}{20}}, & T_{fx} \le t \le T_b(N_{bx} + 1) + T_{fx} \\ 1, & otherwise \end{cases}$

$$TG_{rr}(t) = \begin{cases} 0, & t < T_{fx} \\ \rho_x(1+\rho_x)e^{-\frac{\left(\frac{t-T_{fx}}{T_b} - (N_{bx}+1)\right)^2}{(N_{bx}+1)^2}}, & T_{fx} \le t \le T_b(N_{bx}+1) + T_{fx} \\ 1, & otherwise \end{cases}$$

- □ Originally β_x and ρ_x represented an incremental loss factor of a package and permitted back re-reflection
- □ Data suggested that the same effect may be achieved by locking down β_x and ρ_x merely adjusting the ERL limit

Package and Channel COM added delay experiments: Over 20 thousand simulations represented here

Determining N_{bx} is a correlation exercise

□ COM is computed or ~30 selected channel models with `~30 delays

- This is ~900 COM computations
- For each of the 900 COM computations ERL is computed for each of ~30 N_{bx} values
- □ The idea is to determine which N_{bx} correlates best to the computation set of ERL vs delay to COM vs delay

Experiments

How Well Does COM Track ERL?

- COM tracks ERL when channel reflections are near the device transmitter or receiver.
 - The curve shape of ERL and COM vs. added delay are similar
 - See backup for added delay experiment (20K simulations)
 - The N_{bx} parameter is related of the equalizer (DFE) reach
 - The gating and weighting inversely track COM and ERL

Graphic view finding best correlation of N_{bx} for ERL to COM

Conservative correlation between COM and ERL vs N_{bx} for DFE6 suggest setting N_{bx} =6

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Density contour of last floating tap suggest strong correlation to added delay

Correlation CH119 & 10 more vs. Nbx

Too much interaction variability