Common Mode: Fact or Fiction

Richard Mellitz, Samtec

June 17, 2020

Contents

- Background
- □ SNR_Tx with Rx referred CM noise
- Common to differential voltage transfer function
- □ Results
- What to do about CM

Background

- Common mode noise may introduce differential noise at the receiver.
- □ Utilize a SNR_Tx with Rx referred noise added
- Task force has much experience with what happens when SNR_Tx parameter goes up and down
 - Rather than modifying COM at this point
- □ First step is "do we have a problem"
 - Start with the 30 mV AC CM specification an comprehend for KR first

SNR_Tx Receiver Referred CM Noise

□ Rx CM noise referred to SNR_Tx

$$SNR_{Tx|Rx} = -10 * log10 \left(\frac{\sigma_{dc|rx}^2 + h^{(0)}(ts) 2_{10} - \frac{SNR_{Tx}}{10}}{h^{(0)}(ts)^2} \right)$$

- + $\sigma_{\text{dc|rx}}$ differential noise at the Rx created from AC CM $\,$ noise at the Tx $\,$
- The available signal at the receiver is h⁽⁰⁾(ts)

Simple First Estimate

Details or Estimate for AC CM voltage at Rx

□ AC CM VTF (voltage transfer function)

• $H_{21}^{dc}(\mathbf{f}) = \frac{sdc_{21}(f) \left(1 - \Gamma_{dd_{tx}}\right) \left(1 + \Gamma_{cc_{rx}}\right)}{1 - sdc_{11}(f)\Gamma_{cc_{tx}} - sdc_{22}(f)\Gamma_{dd_{rx}} - \Gamma_{cc_{tx}}\Gamma_{cd_{rx}}\Delta S_{cm}(f)}$

 $\Delta S_{cm}(f) = sdc_{11}(f)sdc_{22}(f) - sdc_{12}(f)sdc_{21}(f)$

□ AC CM voltage estimate

- $\sigma_{dc|rx} = \sqrt{2 \sigma_{cm}^2 \int H_{21}^{dc}(f)^2 W(f) df}$
- W(f) is the spectral power weight function used for ICN

Estimate of common mode voltage translated to differential voltage at the Rx

Package added at a 4 port file

Gauging Study: Results with a Source of 30 mV, 10 mV, and 1 mV of AC CM

file	Old SNR _{Tx} (dB)	New SNR _{Tx} (dB) AC CM 30 mV	New SNR _{Tx} (dB) AC CM 10 mV	New SNR _{Tx} (dB) / AC CM 1 mV
Kateri/Bch2_b7p5_7_	32.5	32.1	32.5	32.5
Kateri/Bch2_b6_7_t	32.5	32.0	32.4	32.5
Kateri/CAch2_a2p5_t	32.5	30.7	32.3	32.5
Heck/.Cable_BKP_28dB_0p575m_more_isi_thru1	32.5	31.6	32.4	32.5
Mellitz/Via_Opt2_28dB_THRU	32.5	32.5	32.5	32.5
Zambell/Thru_Link_9_C1_Pr_14_to_Pr_5	32.5	31.8	32.4	32.5
Gore/C2C_PCB_SYSVIA_20dB_thru	32.5	31.5	32.4	32.5
Palkert/THRU_VL5_OD-BP-Channel_16inch_16inch	32.5	26.4	31.2	32.5
Rabinovich/Channel_Thru_P1_to_P2_01.s4p	32.5	30.7	32.3	32.4

What might a common signal look like

□ Intrapair Voltage Imbalance 0.1 □ Intrapair Skew 0.05 □ CM crosstalk > 0 DD СМ 0.8 Dp 0.8 Dm 0.6 0.6 -0.05 0.4 0.4 0.2 0.2 -0.1 > 4.8 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

×10⁻¹⁰

-0.8

-1

0

time^{0.5}

×10⁻¹⁰

-0.8

_1

0

time^{0.5}

Should spec be an RMS and crest factor?

What to do about CM

□ OPTION 1 include in COM, no need for channel CM spec's

• See backup

- □ OPTION 2 drastically reduce a AC CM voltage to a few mV
- □ Call for action. What does a AC CM really look like
- Once we determine how much AC CM is allowed then next step is address the CM RL specifications

Extra Backup data

How would we could put in COM (93A)

□ Add equation $\sigma_{DC}^2 = 2 \sigma_{cm}^2 \int H_{21}^{dc}(f)^2 W(f) df$ □ Modify

• Equation 93A-36
$$FOM = 10 * log 10 \left(\frac{A_s^2}{\sigma_{TX}^2 + \sigma_{ISI}^2 + \sigma_i^2 + \sigma_{XT}^2 + \sigma_N^2 + \sigma_{DC}^2} \right)$$

• Add term, $\sigma_{cm}{}^2$ to Equation 93A-41

 \Box Add convolution term $P_{dd cm}(y)$ to equation 93A-43

• Where $P_{dd cm}$ is computed from the procedure in 93A.1.7.1