Following Up on Representing Discontinuities for CR Host Board

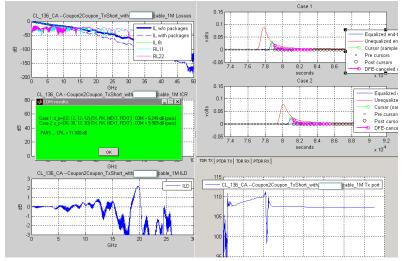
David Katz Liav Ben-Artsi Marvell Semiconductor Inc.

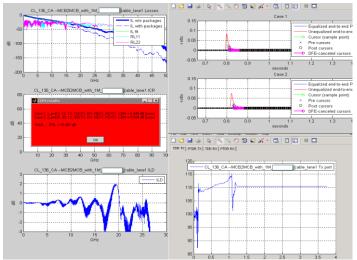
June 2019

MARVELL

IEEE 802.3CK June 26th. ad-hoc

Challenge Definition – Presented During May Interim

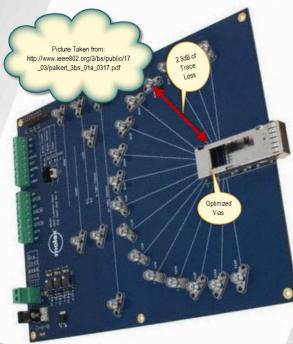

- Basic Assumptions
 - Cable assembly MCB is optimized to best match the cable assembly and is as close as the connector can be to a seamless transition
 - µvias, or other high cost structures are acceptable
 - Impedance variance to be kept to a minimum for these test structures
 - Actual connector area to contain higher reflection via structures and higher production impedance variance.
 - Currently the "include PCB" section in COM does not account for the above discrepancies between MCB and actual PCB


Challenge

Update the "include PCB" section accordingly and include discontinuities, Xtalk and potentially other relevant phenomena

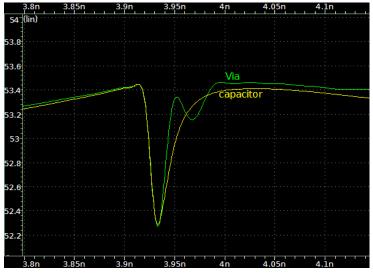
50Gbps "Include PCB" is Somewhat Smooth & Ideal...

- Host "include PCB" is smooth and under accounts for reflections
- Two different MCBs + same 1 meter cable with passing vs. failing ERLs result with the same COM \approx 5.95

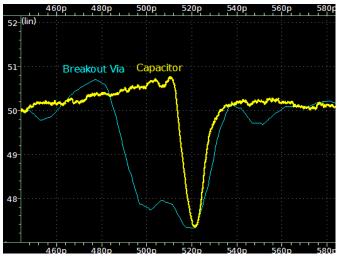


MARVELL

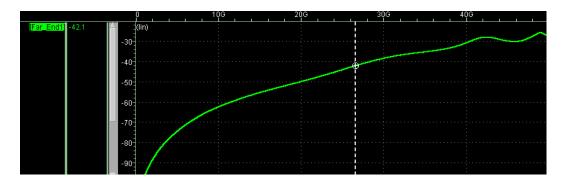
3 IEEE 802.3CK June 26th. ad-hoc

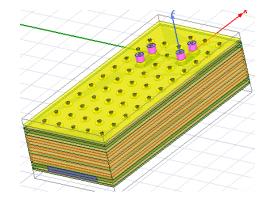

MCB Construction and Measurement Implications

- Cable assembly measurements include optimized structures and ~2.3dB of trace loss matched as best as possible to the cable
- In an actual host board the connector will be linked with through-hole via structures with minimal stubs
- Need as simple a representation as possible to the actual host board vias located at the connector area
- The representation needs to mimic the way actual host board vias would have looked from ~2.3dB away


Correlating Extracted Optimized Via (May Interim)

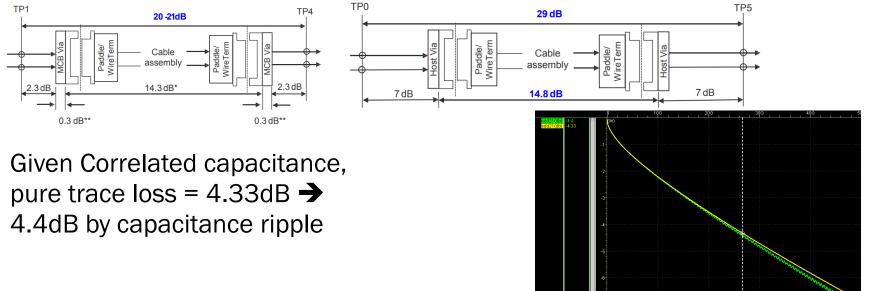
- An optimized via structure placed at the connector of a host board was correlated to a capacitor discontinuity placed 2.3dB closer to the TDR
- The vias had 9 mil drill, 10 mil stub and optimized structure enabling them to be placed within the SMT connector area and a total length of ~2.7mm
- Excessive capacitance value was correlated to 19fF to be located @ the concatenation point to a measured MCB+cable assembly+MCB

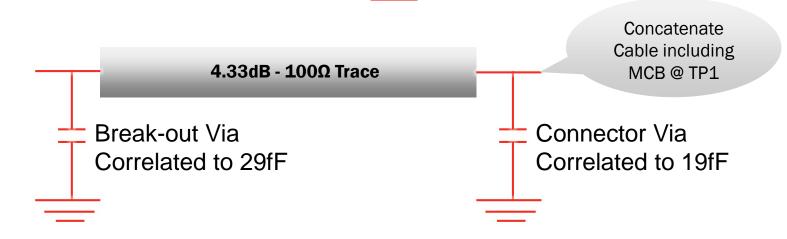

Chip Break-Out Area Phenomena


- The Chip Break-out area is characterized by via discontinuity & break-out traces cross-talk
- Further optimization of break-out Via and correlating <u>the impedance fall</u> to an excessive capacitance resulted in a value of 29fF

Chip Break-Out Area Phenomena – XTalk.

- @ 50Gbps BO Xtalk was low enough to ignore... @100G?!
- Analyzed via pattern surrounded by GND (as was defined by a group of 802.3ck participants during discussions prior to this work done) and break-out traces Xtalk from <u>ONE</u> aggressor → 40dB ICR (Via + trace loss ~2dB)




- Tx side: SNDR @ TPO is -33dB How would it look @ TPOa? Lower SNDR to account for Xtalk?!
- Rx side: should account for two aggressors Xtalk → -34dB Lower Tx SNDR for this?
 - if yes; one side accounted for; SNDR = -27.5dB !

"Include PCB" Trace Loss

- As suggested in <u>http://www.ieee802.org/3/ck/public/19_05/palkert_3ck_01b_0519.pdf</u>
- TPO-TP1 Loss should follow \approx 7dB-2.3dB-0.3dB = 4.4dB

Current Model to be Inserted as "Include PCB"

"Include PBC" Status & Next Phases

- Vias were correlated to simple capacitance values 29fF & 19fF
- A simple trace representation suggested to be added to accommodate the end to end target loss including the MCB loss
 - Fit 4.33dB 100Ω "Meg7 like" trace for parameters

Two phase examination:

- Integrate suggestion into a "test" COM version and examine impact
- Decide how to account for Xtalk (SNDR?!) and examine impact

Thank You

IEEE 802.3CK June 25th. ad-hoc