How to Proceed on C2C Application

Ali Ghiasi
Ghiasi Quantum LLC
IEEE 802.3ck Adhoc Meeting

June 26, 2019

Straw Polls Results

\square C2C-L had 71\% support and No might be as some view it too close to KR
\square C2C-S has stronger support possibly because it fill a void given that it can operate with end-end FEC.

Straw Poll \#10:

I support the task force effort to define a C2C-L AUI similar to ghiasi_3ck_02_0519.
Yes: 20 No: 8 Abstain: 12

Straw Poll \#11:

I support the task force effort to define a C2C-S AUI similar to ghiasi_3ck_02_0519 with loss TBD.
Yes: 30 No: 0 Abstain: 9

TOR Trace Length

\square Max trace for TOR switches according Rob Stone a well design system may have 9" long traces

- Assuming $1.25 \mathrm{~dB} /$ in and 1 dB for 2 vias a $9^{\prime \prime}$ host trace loss will be 12.5 dB
- http://www.ieee802.org/3/100GEL/public/18_03/stone_100GEL_01_0318.pdf
\square To achieve 9 " long traces it require rotating ASIC by 45 degree otherwise traces could be ${ }^{\sim 11 "}$
- Assuming $1.25 \mathrm{~dB} /$ in and 1 dB for 2 vias a 11 " host trace loss will be 14.75 dB
\square Potentially ~1/3 of the optical ports will require retimer
\square Potentially $\sim 2 / 3$ of the $\mathrm{Cu} / o p t i c a l$ ports will require retimer
\square Need a low power-cost C2C-C2M CDR solution!

Facebook Minipack

$\square 4$ RU design with Tomahawk III and inverse-mux to 128 QSFP28

- The trace length for this system is about $16^{\prime \prime}$ (Meg $71.25 \mathrm{~dB} / \mathrm{in}$) total for main board plus the daughter card
- The estimated total loss will be 20 dB for PCB, 2 dB for connector, and 2 dB for 4 vias for total loss of 24 dB
- Minipack will be more in line with C2C-L as 20 dB C2C not sufficient.

Two Common C2C-S Applications

These two common C2C-S applications can satisfied with ~300 mm trace and by repurposing 16 dB C2M budget

- Connecting to far-side of the ASIC IO may require retimer

Overview of C2C-S and C2C-L Attributes

\square C2C-S will leverage C2M equalizer and operate with end-end FEC
\square Can we safely increase C2C-S to 20 dB and still operate with end-end FEC?

Parameters	C2M	C2C-S	C2C(MR)	KR	C2C-L
Chip configuration	ASIC to CDR	ASIC to CDR	ASIC to ASIC	ASIC to ASIC	ASIC to ASIC
Link configuration	One Connector	One Connector	One Connector	2 Connectors	One Connector
Host PCB Reach (mm)	~ 225	~ 280	~ 360	~ 500	~ 500
FEC operation	Pass Through	Pass Through	$?$	Terminated	Terminated
FEC Interleave/Non-Interleave	NA	Same as C2M	Same as C2M	TBD for 100G	Same as KR
Back Channel Link Training	NA	NA	Optional	Required	Optional
[ASIC, CDR] Trace Lengths (mm)	$[30,8]$	$[30,15]$	$[30,30]$	$[30,30]$	$[30,30]$
[ASIC, CDR] Package Losses (dB)	$[4,1]$	$[4,2]$	$4+4$	$4+4$	$4+4$
Max channel loss at Nyquist (dB)	16	15	20	28	26.5^{*}
Max Bump-Bump Loss (dB)	~ 21	~ 21	~ 28	~ 36	~ 34.5
* C2C-L loss is lower by 1.5 dB compare to KR because the link only has one connector with about same PCB loss.					

Largest DFE Taps That Link Segment Can Operate with End-End FEC

DFE burst error analysis for 4 tap DFE, please see anslow 3ck $01 \quad 0119$

- Recommended DFE taps limit for 4 tap is $0 \leq t 1 \leq 0.5,-0.05 \leq t 2 \leq 0.2,-0.05 \leq t 3 \leq 0.1,-0.05 \leq t 4 \leq 0.05$

100G 4 tap DFE(0.5, -0.05, 0.1, -0.05) worst without precoding

100G 4 tap DFE(0.5, 0.2, $-0.05,0.05$) worst with precoding

C2C Channels

\square Construction of C2C channels based on PCB and cable construction provided by Brandon Gore

- http://www.ieee802.org/3/ck/public/19 05/gore 3ck 01a 0519.pdf

COM 2.7 Table for C2C and C2C-L

Gore C2C 20 dB Channels

20 dB PCB Channel

20 dB Cabled Channel

DFE5 Taps=[0.433;-0.045;-0.025;-0.015;0.022]

DFE4 Taps $=[0.335 ;-0.086 ;-0.030 ;-0.0125]$
$B 1(\max)=0.5, B[2-12](\max)=0.2$ COM
Case I=7.13 dB, Case II=5.4 dB DER at 3 dB COM
Case $\mathrm{I}=2.4 \mathrm{e}-12$, Case $\mathrm{II}=1.2 \mathrm{e}-7$
$B 1(\max)=0.5, B[2-8](\max)=0.2$ COM
Case I=6.1 dB, Case II=5.4 dB DER at 3 dB COM
Case I=6.0e-9, Case II=1.3e-7
$B 1(\max)=0.5, B[2-5](\max)=0.2$ COM
Case I=5.9 dB, Case II=5.2 dB DER at 3 dB COM
Case I=3.3e-8, Case II=2.9e-7
$B 1(\max)=0.5, B[2-4](\max)=0.2$ COM
Case I=5.5 dB, Case II=5.1 dB DER at 3 dB COM
Case $\mathrm{I}=1.5 \mathrm{e}-7$, Case $\mathrm{II}=4.3 \mathrm{e}-7$

DFE5 Taps $=[0.37 ;-0.054 ;$;-0.01;-8.9e-04;0.014]

$B 1(\max)=0.5, B[2-12](\max)=0.2$ COM
Case I=6.9 dB, Case II=5.1 dB DER at 3 dB COM
Case I=1.0e-10, Case II=1.7e-7
$B 1(\max)=0.5, B[2-8](\max)=0.2$ COM
Case $\mathrm{I}=5.9 \mathrm{~dB}$, Case $\mathrm{II}=4.9 \mathrm{~dB}$ DER at 3 dB COM
Case I=3.0e-8, Case II=9.7e-7
$B 1(\max)=0.5, B[2-5](\max)=0.2$ COM
Case $I=5.8 \mathrm{~dB}$, Case $I I=4.8 \mathrm{~dB}$ DER at 3 dB COM
Case I=5.2e-8, Case II=1.2e-6
$B 1(\max)=0.5, B[2-4](\max)=0.2$ COM
Case I=5.7 dB, Case II=4.8 dB DER at 3 dB COM
Case $I=6.5 \mathrm{e}-8$, Case $\mathrm{II}=1.2 \mathrm{e}-6$

DFE4 Taps=[0.395;-0.079;-0.045;-0.027]

How to Proceed

\square What should be the loss of C2C-S 16 dB ?

- What should be C2C-S reference packages
- Assuming [15, 30] mm for ASIC with 1.8 mm PTH and $[4,15] \mathrm{mm}$ for CDR having PTH of $[0,0.4] \mathrm{mm}$
\square What should be the loss of C2C-L 26 dB ?
- What should be C2C-L reference packages
- Assuming [30,30] mm for ASIC with 1.8 mm PTH
\square What equalizer would be necessary for each solution assuming bmax=0.5 and $b[2, n]=0.2$ and $D E R=1 E-5$
- C2C-S with 16 dB similar to C2M
- C2C with 20 dB about 5 taps DFE
- C2C-L with 26 dB about 12 taps DFE
\square Instead of defining C2C-S and C2C-L should we instead define just one C2C with $\mathbf{2 0} \mathbf{~ d B ~ i f ~ i t ~ c a n ~ b e ~ o p e r a t e d ~ w i t h ~}$ end to end FEC?
- Expand C2C-S applications but only have one solution
- The 20 dB Gore channels can operate with end-end FEC not sure if we can broadly say 20 dB channels can be operated with 5 Tap sufficiently constrain DFE to avoid burst error
- As shown in case of design such as Facebook minipack 20 dB not sufficient
\square Only C2C-S can leverage C2M equalizer both C2C and C2C-L are new equalizer class given that KR would be overkill for C2C-L.

